Overview of NMR of Bulk Polymers

Hans Wolfgang Spiess

Max-Planck-Institut für Polymerforschung Mainz, Germany

> "NMR Spectroscopy of Polymers" Tutorial ACS National Meeting

New Orleans, April 6, 2008

Overview of NMR of Bulk Polymers

- **Introduction Basics**
- Local Structure & Dynamics Amorphous & Crystalline Polymers
 - **Phase Behavior Core Shell Structures**
- Supramolecular Organization Functional Polymeric Systems
 - **Conclusions Scattering and NMR**

Angular dependent NMR - frequency: $\omega = \omega_L + 1/2 \Delta (3 \cos^2 \Theta - 1 - \eta \sin^2 \Theta \cos 2\Phi)$

Analogous for ²H quadrupole coupling

Dipole-Dipole Coupling

Typical pairs of nuclei

Solid State NMR Spectra

Magic-angle spinning (MAS)

in terms of coordinate transformations:

 $\frac{1}{2}(3\cos^2\theta - 1) \qquad \qquad \frac{1}{2}\sin^2\beta\cos(2\omega_R t - 2\gamma) - \frac{1}{\sqrt{2}}\sin(2\beta)\cos(\omega_R t - \gamma)$

rotor modulations with frequencies $2\omega_R$ and ω_R

Polyolefin Branching

MAS-NMR in Melts: Very Low Branch Contents

Quantification of 7–8 branches per 10 000 C Optimised **solution** NMR:

50,000 to 2,000,000 scans (up to 60 days!) Optimised melt-state NMR: 21,500 scans (13 h)

Macromolecules 37, 813 (2004), Macromol. Chem. Phys. 207, 382 (2006).

¹³ C – NMR: Conformational Effects

38 36 34 32 30 28 26 24 22

42

40

Sensitivity of ¹³C Chemical Shifts on Conformation :

Gamma - *gauche* effect: - 5,2 ppm in alkanes

Conformational Effects on ¹³C Chemical Shifts

Self-Assembly and Molecular Dynamics of Peptide-Functionalized Polyphenylene Dendrimers

 $(\alpha$ -helices)

Low order of peptide chains

Introduction • Basics

Configuration, Conformations

Chain Branching

Local Structure & Dynamics • Amorphous & Crystalline Polymers

Phase Behavior • Core Shell Structures

Supramolecular Organization • Functional Polymeric Systems

Conclusions • Scattering and NMR

Motional averaging effects

Motional averaging effects

Basics: Two site jumps

(analogous to chemical exchange)

Calculated NMR line shapes resulting from interchange between two NMR frequencies.

 Δ : coupling strength Ω : exchange rate

The numerical values apply to ²H NMR of deuterons in C-H bonds

Two-site jumps: CSA

¹H powder spectrum of H_2O molecules in crystalline $CaSO_4 \cdot 2H_2O$

$$\mathbf{m} = \frac{k_{jump}}{\delta} = \frac{1}{\delta} \cdot \tau_{jump}$$

Two-site jump in solid: Different frequencies depending on orientation.

> Result in fast motion limit: Averaged interaction tensor

Line shape analysis yields both: Timescale and geometry of motion

Two-site jumps: CSA, DDC and QC

The "solid echo" experiment

Motions in the "solid echo" experiment: Increased dynamic range

Solid echo spectra: Line shape changes over several orders of magnitude,

But: loss of signal!

NMR line shapes conveniently calculated by NMR Weblab

http://weblab.mpip-mainz.mpg.de/weblab/weblab.html

NMR Weblab: How to use it

http://weblab.mpip-mainz.mpg.de/weblab/weblab.html

NMR Weblab: Example phenyl flip

The Deuteron Weblab - Mic	rosoft Internet Exp	lorer			
stei Bearbeiten Ansicht I	Favoriten Extras	1			A *
Zurück 🔹 🕥 🕣 💌	🔰 🏠 🔎 Such	hen 🔆 Favoriten 🔿 I	Medien 🚱 🍰 😓	🖾 · 🔜	3
resse 🛃 http://weblab.mpip-n	nainz.mpg.de/cgi-bin/w	eblab41/weblab.pl			💌 🛃 Wechseln zu 🛛 Link
Cone Men Cone angle θ Flip angle φ fump angle distr Width of distr Population 1 co/from (+-kHz) Lineshape Broadening (kHz) Show one Transition Spectrum Rese Restart He	60.0 180 No 0.0 0.5 150.0 150.0 1orentzian 3.0 3.0 C Back	0.02 0.015 0.01 5×10 ⁻³ 0 -10 List Download	frequency (kHz)	100	Input parameters: 5g: 128.000 MHs ηg: 0.000 theta: 60.000° phi: 100.000° site pos/deg pop 1 -20.00 0.500 2 90.00 0.500 Broadening: 3.0 MHs Lineshape: lorentmian Eigenvalues of averaged tenson V ₁₁ : -64.000 MHs V ₂₂ : -16.000 MHs 56: 80.0000 MHs 56: 80.0000 MHs 56: 0.6250 η: 0.6000 Eigenvectors of averaged tenson *1 *2 *9 * 1.0000 0.0000 0.0000 9 0.0000 0.0000 1.0000 = 0.0000 1.0000 0.0000 \$\Phi \$0.000 \$0.000 \$\Phi \$0.000 0.000 \$0.000 \$0.000 \$\Phi \$0.000 0.000 \$0.000 \$0.000 \$\Phi \$0.000 0.000 \$0.000 \$0.000 \$\Phi \$0.000 \$0.000 \$0.000 \$0.000 \$\Phi \$0.000 \$0.00
		4			
PH-		21			I okalas Totranat

http://weblab.mpip-mainz.mpg.de/weblab/weblab.html

Inhomogeneous and homogeneous line broadening

Overall resonance consists of indiviual sharp lines and represents the sum over all different orientations

Inhomogeneous:

CSA, quadrupolar, dipolar two-spin

Due to spin-spin couplings the energy levels of single transitions (resonance lines) are no longer degenerate, but split into a multitude of levels

Homogeneous:

dipolar multi-spin

Example of heterogeneous rate distribution

Superposition of line shapes for different rates

2D-Exchange-Spectroscopy: Simplicity

A-B

0

 ω_{2}

 ω_1

ω

Pulse Sequence

Spectra

Geometry of Chain Motion in Polymers

¹³C 2D Exchange NMR Spectra of Polymers with Different Degrees of Disorder

Helical jumps in polymer crystallites: POM

Chain Folding, Chain Diffusion and Drawability

Sensitivity of ¹³C Chemical Shifts on Conformation :

Gamma - *gauche* effect: - 5,2 ppm in alkanes

Chain Dynamics of Atactic Poly(propylene) at the Glass Transition

Conformational transitions, but no defined geometry **Correlation Times of Chain Motion from different NMR experiments**

n-alkyl-methacrylates contain extended chain segments

s-PEMA: Conformation and Conformational Dynamics

Separation of Dynamic Timescales in PEMA-Melts

Intersegmental Order in Poly(methacrylates): WAXS

2D DECODER NMR for Ordered Systems

Recoupling CSA: CODEX

CODEX: Centreband-Only Detection of Exchange *Approach:* Recoupling the chemical-shift anisotropy (CSA) under MAS

Advantages:

High spectral resolution, short measuring time compared to 2D exchange NMR

CODEX: reorientation angle

CODEX build-up curves

- exchange intensity for a given mixing time depends on the overall duration of recoupling
 - shape of the curves depends significantly on the reorientation angle

- Introduction Basics
- Configuration, Conformations Chain Branching
 - Local Structure & Dynamics Amorphous & Crystalline Polymers
 - **Phase Behavior Core Shell Structures**
- Supramolecular Organization Functional Polymeric Systems
 - Conclusions Scattering and NMR

Phase Separation Probed by Spin diffusion

Domain Sizes in Phase Separated Polymers

Detection of decaying polybutadiene signal

Rigid and Mobile Components

Both Components Rigid

Spin Diffusion in 2D Wideline Separation Spectra

Investigating core-shell particles

structure and particle size can be determined

- Introduction Basics
- **Configuration, Conformations** Chain Branching
 - Local Structure & Dynamics Amorphous & Crystalline Polymers
 - **Phase Behavior** Core Shell Structures
- Supramolecular Organization Functional Polymeric Systems
 - Conclusions Scattering and NMR

Key Elements of Supramolecular Assemblies

¹H NMR spectra in solid and liquid state

Dipole-Dipole Coupling:

$$\hat{H} = \hat{R}_{2,0} \cdot \hat{T}_{2,0}$$
Space Spin

Magic Angle Spinning:

Signal build-up versus rotor-encoding

2

Two alternative concepts for measuring recoupled interactions:

- following the signal intensity as a function of the recoupling time (resulting in **build-up** or dephasing **curves**)
- recording rotor-encoded signal (resulting in MAS sideband patterns)

Recoupled dipolar Hamiltonian:

REDOR-type curves and sideband patterns

HDOR sideband **patterns robust:** Multispin effects: additional sidebands

Multiple-quantum NMR methods: investigating (supra)molecular structure

¹H-¹H homonuclear

H-13C/15N heteronuclear

Multiple Hydrogen Bonds in Natural and Synthetic Systems

Heat-Induced Tautomeric Rearrangement: ¹H-¹H DQ Spectra of Quadruple Hydrogen Bonds

Kinetics of the Tautomeric Rearrangement

Multiple N-H Distances in the Pyrimidinone Form

¹H{¹⁵N} recoupling: ¹H - detection

Separator Membranes and NMR

- → reveal details of proton conductivity on *molecular* level (site-selective & non-destructive)
- → provide structural constraints (proton transfer mechanism ?)

PVPA: poly(vinyl phosphonic acid)

High proton conductivity under dry conditions at elevated temperatures

NMR probes for local structure & dynamics

³¹P NMR

phosphonic acid units, local **dynamics**

¹H NMR

backbone as well as mobile protons (local dynamics)

²H NMR

primary process: orientation-dependent rate of movement: time scale and geometry (multi-site jumps)

¹H-¹³C NMR

segment mobilities of alkyl chains, **polyvinyl backbone**

¹H⁻³¹P and ¹H-¹H NMR

hydrogen bonding at phosphonic acid units

PVPA: VT NMR motional narrowing

very narrow lines in both ¹H and ³¹P spectra

Poly(vinyl phosphonic acid): PVPA

P-OH : mobile proton, hydrogen bonded ¹H - ¹H DQ Spectra Dynamics of motion involved in proton conduction 318 K P-OH proton: mobile -5 ²H solid echo spectra -5 0 mobile 5 m 10 d Log (T2^{*}) -7 15 20 -8 25 kJ/mol 25 <u>_</u>Q In 2.2 2.4 2.8 3.0 3.2 2.6 14121086420-2-4 1000/T (K⁻¹) O=POD ppm 413 K ÓD 393 K 281 K 394 K -5 375 K 353 K 0 5 5 udd 356 K 297 K 253 K 15 318 K 230 K 20 motion 25 -50 -100 -150 20 10 -10 150 100 50 frozen 0 0 30 12 kHz 16 8 0 ppm 4 -4 ppm

H MAS spectra

2

PVPA: *ab initio* **structure** (model geometry)

Ab initio calculation based on model geometry (CPMD):

- * Elucidation of hydrogen bondings and ¹H chemical shift calculation:
 - → H-bonding between phosphonic acids on the same chains and between two parallel chains
 - → MD: Proton hopping occurs along chains as well as between chains mediated by hydrogen bonds.
 - → calculated δ (P-OH) = 9.7 ppm (exp.: 10.6 ppm)

Broad distribution of angles between instantaneous O-H and C-P directions, yet

Quadrupole coupling reduced by factor 10 after CPMD run of 15 ps

- Introduction Basics
- Configuration, Conformations Chain Branching
 - Local Structure & Dynamics Amorphous & Crystalline Polymers
 - **Phase Behavior** Core Shell Structures
- Supramolecular Organization Functional Polymeric Systems
 - **Conclusions Scattering and NMR**

Scattering and NMR in Bulk Polymers

SCATTERING

NMR

		incoherent	coherent	single quantum	double quantum
D					
N A M	Molecular	n-quasielastic	n-quasielastic	2D-, 3D-, 4D- exchange	sidebands
I					
S	Collective		n-spin-echo	2D-exchange	decay of DQC
S T					
- R U C T	Molecular		WAXS, WANS	chemical shift, sidebands	2D pattern, sidebands
U					
E	Collective (packing)		X-ray pole figures, SAXS, SANS	DECODER chemical shift	2D signal pattern

Overview of NMR of Bulk Polymers

Advantages of NMR:

- Selectivity, Versatility
- Detailed information on geometry and time scale of dynamics
- Large range of length- and time scales accessible
- Elucidation of supramolecular organization
- Relation between structure, dynamics and functional behavior
- Limits not reached, e.g. microcoils

K. Schmidt-Rohr, H.W. Spiess, *Multidimensional NMR and Polymers*, Academic Press, London, 1994

H. W. Spiess, Advanced Solid-State Nuclear Magnetic Resonance for Polymer Science;
J. Polym. Sci. A 42, 5031–5044 (2004).

H.W. Spiess, *NMR Spectroscopy*, in Macromolecular Engineering, edited by K. Matyjaszewski, Y.Gnanou, L. Leibler, WILEY-VCH, Weinheim, Vol. **3**, 1937-1965 (2007).

H. W. Spiess, *NMR Spectroscopy: Pushing the Limits of Sensitivity* Angew. Chem. Int. Ed. **47**, 639-642 (2008).

