NMR-

Pulse program

Reference Manual

Copyright (C) 2000 by Bruker Analytik GmbH
All rights reserved. No part of this publication may be reproduced, stored in aretrieval sys-
tem, or transmitted, in any form, or by any means without the prior consent of the publisher.
Printed: 15 Oct 2001

Product names used are trademarks or registered trademarks of their respective holders.

Bruker software support is available via phone, fax, e-mail, Internet, or ISDN.
Please contact your local office, or directly:

Address. Bruker Anaytik GmbH

Software Department
Silberstreifen
D-76287 Rheinstetten
Germany
Phone: +49 (7243) 5161 440
Fax: +49 (7243) 5161 480
E-mail: nmr-software-support@bruker.de
FTP: ftp.bruker.de/ ftp.bruker.com
WWW: www.bruker.de / www.bruker.com

ISDN: on request

http://www.bruker.de
http://www.bruker.de
http://www.bruker.de
http://www.bruker.com
http://www.bruker.com

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Basicpulseprogram Writingco i e 3
11 INtrOdUCHIONo e 3
12 Pulseprogram library o 4
13 Pulseprogram displayt e 4
14 BasiCoyntaX rUIES.t e 4
15 PUISEgENErationot e 9
16 Delay Qeneration.ot e 34
17 Simultaneous pulsesand delays.o 40
DECOUPIING . . oot 45
21 DECOUPIING . . o o ettt e 45
22 Composite pulse decoupling (CPD) oo v v et 47
Loopsand conditionsttt 55
31 Loop Statementst 55
32 Conditional pulse program exeCution.cvuuiier i iieeeenn. 57
33 Suspend/resume pulse program eXeCUutionot i et 64
Dataacquisitionand storaget 65
4.1 Start dataacquiSition 65
4.2 Acquisiionmemory buffers. 73
4.3 Writing datato diskot 75
Themcmacrostatement i 79
51 Themcmacrostatementin2D.t 79
52 Themcmacrostatementin3D.t 84
53 Additional MC ClaUSES. v vt 85
54 General SyntaXx Of MCot e e e 88
MisCellan@oUS 91
6.1 MURIPIETECEIVENS. . . ot 91
6.2 Real timEOULPULS oo e 92
6.3 Gradients. 93
6.4 Miscellaneous statements.ottt e 99

Chapter 1

Basic pulse program writing

1.1

I ntroduction

A pulse program isan ASCII text consisting of a number of lines. Each line may
contain one or more pulse program statements which specify actions to be per-
formed by the acquisition hardware and software. You can set up a pulse program
with the XwIN-NMR commands edpul or edcpul (seethe Acquisition Refer-
ence manual). The XWIN-NMR acquisition commands gs, go, and zg execute the
pulse program defined by the acquisition parameter PUL PROG which can be set
with eda or pul pr og. Pulse program execution is a two-step process: After
entering gs, go, or zg, the pulse program compiler isinvoked which translates
the pulse program text into an internal binary form that can be be executed. Possi-
ble syntax errors are reported. If errors are found, the acquisition will not be
started. If, however, the compilation is successful, the compiled pulse program is
loaded into the acquisition hardware and the measurement begins.

Spectrometer naming conventions

This manual iswritten for Avance spectrometers. Nevertheless, alarge part of it
isalsovalid for older spectrometerslike AMX, ARX and ASX. Sincethe end of
1999, Bruker delivers a new type of Avance spectrometers that are specified in
this manual as Avance-AQS. The conventional Avance spectrometers are spec-

4

ified as Avance-AQX. You can easily find out which type of spectrometer you

have by opening the cabinet door; one of the racksisnamed either AQS or AQX.
Note that there are three types of Avance-AQX spectrometers: DM X, DRX or

DPX. These specific names are used in this manual whenever a description only
holds for one or two of them.

1.2 Pulse program library

Routine users normally use Bruker pulse programs that delivered with XWIN-NMR.
The edpul command displays alist of these pulse programs and alows you to
view their contents. Viewing Bruker pulse programs requires that the expi n-

st al I command was executed once after the installation of XWIN-NMR. This
command copies the pulse programs suitable for your spectrometer into the appro-
priate directory.

If you want to write own pulse programs, it can be helpful to start with a Bruker
pulse program and modify it to your needs.

1.3 Pulse program display

A graphical representation of a pulse program for Avance type spectrometers can
be obtained with the command pul sdi sp, which is described in the Acquisition
Reference manual. After writing your own pulse program, pul sdi sp will not
only check its syntax, but it will also allow you to display any timing detail before
you start an experiment.

1.4 Basic syntax rules

Table 1.1 shows zgcw30 as an example of asimple Bruker pulse program. Here the
following pulse programming rues are used:

1. Pulse programs are line oriented. Each line specifies an action to be performed
by the acquisition hardware or software.

2. A semicolon (;) indicates the beginning of acomment. You can put it anywhere
inaline. Therest of the line will then be treated as a comment.

3. #include <filename> or #include “filename’

;zgcw30

;avance-version

;1D sequence with CW decoupling
;using 30 degree flip angle

#i ncl ude <Avance. i ncl >

1 ze
dll pl 26:f2
d1ll cwf2

2 dl
pl*0. 33 phl
go=2 ph31
w #0
d11l do:if2
exit

phi=0 2 2 013 31
ph31=0 2 2 013 31

;pl1: f1 channel - power level for pulse (default)
;pl26: 2 channel - power level for cw/hd decoupling
;pl: f1 channel - 90 degree high power pulse

;dl: relaxation delay; 1-5* T1

;d11: delay for disk 1/0 [30 msec]

Table 1.1 Pulse program example

This statement allows you to use pulse program text that is stored in a different
file. It allows you to keep your pulse program reasonably sized, and to use the
same code in various pulse programs. If the filename is given in angle brackets
(<>), thefileis searched for in the directory $xwiNNMRHOME/exp/stan/nmr/
lists/pp/. Alternatively, double quotes (* “) can be used to specify the entire
path name of the file to be included.

.1 ze

Any pulse program line can start with alabel (“1" in the example above).
Labels are only required for lines which must be reached by loop or branch
statements such asgo=Il abel ,| oto | abel times norgotol abel.You

6

can, however, also use labels for numbering the lines. A 1abel can be a number
or, an aphanumeric string followed by a comma. An example of the latter is:

firstlabel, ze

The statement ze has the following function:
* Reset the scan counter (which is displayed during acquisition) to O

« Enablethe execution of dummy scans. Thiswill cause the pulse program
statement go=I abel to perform DS dummy scans before accumulating
NS data acquisition scans. If you replace ze with zd, go=I abel will
omit the dummy scans

¢ The statement zd automatically resets all phase program pointers to the
first element, whereas the statement ze sets all phase program pointers
such that they are at the first element after DS dummy scans.

5. d11 pl 14:f2
Execute a delay whose duration is given by the acquisition parameter D[11].
Behind any delay statement, you can specify further statements to be executed
during that delay (note that the delay must be long enough for that statement).
In thisexample, the power level of channel f2 is switched to the value given by
the acquisition parameter PL[14].

6. d11 cw f2
Execute a delay whose duration is given by the acquisition parameter D[11]
and, at the same time, turn on continuous wave (cw) decoupling on frequency
channel 2. Decoupling will remain active until it is explicitly switched off with
the statement do:f 2. This delay and cw decoupling will begin immediately
after the delay specified in item 5 has finished.
Items 5 and 6 illustrate a general feature of pulse programs: the actions speci-
fied in two consecutive lines are executed sequentially. Actions specified on the
same line are executed simultaneously.

7. 2 d1
Execute a delay whose duration is given by the acquisition parameter D[1].
This line starts with the label “2*, the position where the statement go=2 will
loop back to.

8. p1*0. 33 ph1l
Execute a pulse on frequency channel f1. The pulse length of this pulseisgiven
by the acquisition parameter P[1] multiplied by 0.33. P[1] isnormally used for
the pulse width of a90° flip angle. The statement p1* 0. 33 would then execute

a 30° pulse. In general, you can specify the operator * behind (not beforel!) a
pulse or delay statement, followed by a floating point number. Note that the
channel f1 isnot specified; it is the default channel for p1,i.e.:

pl*0. 33
isidentical to:
pl*0.33:f1

The pulse is executed with a power (amplitude) defined by the acquisition pa-
rameter PL[1]. PL[1] isthe default power level for channel 1, but you can aso
use adifferent parameter. For example, the statement pl 7:f 1 setsthe channel f1
power to thevalueof PL[7]. It must be put on aseparateline, with adelay, before
the line with the pul se statement. This gives the transmitter some time to settle
before the pulse is executed.

The phase of this pulsein our exampleis selected according to ph1, the name of
aphase programor phase list. It must be specified behind the pulse and defined
after the pulse program body. In this example we use the phase program

phi1=0 2 2 01331

The phase of the pulse varies according to the current data acquisition scan. For
thefirst scan, p1 will get the phase 0* 90°, for the second scan 2* 90, for thethird
scan 2* 90, for the fourth scan 0* 90, etc. After 8 scans, thelist is exhausted. The
phase program is cycled so with scan 9 the phase will be set to the first element
of thelist: 0*90°. Phase cycling isamethod of artefact suppression in the spec-
trum to be acquired. The receiver phase must be cycled accordingly to ensure
that coherent signals of subsequent scans are accumulated, not cancelled. Thisis
achieved by the receiver phase program ph31 in our example.

. go=2 ph31

Execute 1 data acquisition scan, then loop to the pulse program line with label
“2". Repeat thisuntil NS scans have been accumulated. Note that NSisan
acquisition parameter. The data acquisition scans are preceded by DS dummy
scans (because the statement ze is used at the beginning of the pulse sequence
rather than zd). A dummy scan does not acquire any data, but requires the same
time (given by the acquisition parameter AQ) asareal scan. Dummy scans are
used to put the spin system of the sample into a steady state before acquisition
starts.

The receiver phaseis changed after each scan as described above for the pulse
phase. Phase cycling is done according to the phase program ph31. Phase

cycling is also used during the execution of dummy scans. Both DS and NS
must therefore be a multiple of the number of phasesin the list.

Thego=I abel statement executesadelay, the so-called pre-scan delay to avoid
pulse feed through before it starts digitizing the NMR signal. During this time
the receiver gateis opened. For AQ_mod = DQD and for any value of AQ_mod
if you have an RX 22 receiver, the frequency is switched from transmit to re-
ceive. DE isan acquisition parameter that can be set from eda or by enteringde
on thecommand line. It consists of the sub-delaysDE1, DE2, DEPA, DERX and
DEADC that can be set with the command edscon (see the Acquisition Refer-
ence manual). Normally, you can accept the default values for DE value and its
sub-delays. Thetotal timethego=I abel statement requiresto executeascanis
DE+AQ+3 millisec. The duration of 3 millisec isrequired for preparation of the
next scan. It isvalid for all Avance type spectrometers. AMX/ARX spectrome-
tersrequire 6 millisec.

10w #0
Writes the accumulated data asfile fid into the EXPNO directory of the current
data set. Note that with the zgew30 pul se program, data are only stored on disk
after all NS scans have been accumulated. You can, however, store the datato
disk at any time during the acquisition by entering the command t r on the
command line. You can process and plot these data while the acquisition con-
tinues. If you want to protect your data against power failures during long term
experiments, we recommend that you write the data on disk in regular intervals,
for example every 1000 scans. To accomplish this, you can set NS=1000, and
add the line:

loto 1 tinmes 30

beforetheexi t statement. The pul se program then accumulates atotal of
30.000 scans, but stores the result every 1000 scans.

Please note that the loop must include the ze statement. The reason for thisis
that w #0 adds the last acquired data to the data already present in thefile.

Thereal time FID display will only show the data currently present in the acqui-
sition processor’s memory.

1l.exit
Specifies the end of the pulse program.

1.5 Pulse generation

Table 1.2 shows the available types of statements for the generation of high fre-

quency pulses.

pO, p1, ..., p31

Generate a pulse whose length is given by
the acquisition parameter P[0], ..., P[31].

3. 5up, 10mp, 0. 1sp

Generate a pulse of fixed length: up =a
psec pulse (mp = millisec, sp = sec).

P135, p30d1H

Generate a pulse, whose name is defined
by adef i ne pul se statement, and
whose duration is defined by an expres-
sion.

vp

Generate a pulse whose length is taken
fromapulselist.

pul se(fli pangl e, aut o,
dur ati on)

pul se(fli pangl e, power,
aut o)

Generate a pul se causing the specified flip
angle.

Table 1.2 Pulse generation statements

A high frequency pulseis described by its:

* duration (= pulse width)
» frequency
* phase

» power (= amplitude) and shape

« flipangle

The following paragraphs will describe these items.

1.5.1 Pulseduration

The pulse duration is selected according to the name of the pulse statement.

10

1511

1512

1513

pO-p31
The statement:
pO

executes a pulse of width P[Q]. P[0] is an acquisition parameter that can be set
from eda, or by typing pO on the command line. Likewise, the statement:
pl

executes a pulse of width P[1].

Fixed length pulses

The statement:
10nmp

executes a pulse of width 10 millisec (called afixed pulse because its duration can-
not be manipulated, see below). The duration must be followed by up, mp or sp.
These unitsindicate microseconds, milliseconds, and seconds, respectively. If you
would omit the terminating “p*, adelay would executed instead of a pulse.

User defined pulses

The statement:

p30d1H
executes a pulse whose name is defined by the user, and whose duration is deter-
mined by an arithmetic expression. For example, theline:

define pul se p30di1H

defines p30d1H to be a pulse statement, and the line;
“p30d1H=pl*0. 33"

defines the expression for its duration. Note that the definition must be within dou-
ble-quotes (*) .

Both the define statement and the defining expression must be placed before the
beginning of the actual pulse sequence. It is evaluated at compile time of the pulse
program, not at run time. User defined pulses can consist of alphanumeric charac-
ters, where the first character must be a alphabetic. The maximum length of the

11

1514

1515

nameis 11 characters. Make sure you do not use any of the reserved words like
,adc', ,go’, ,pulse' etc.

Variablelist pulses

The statement:
vp

executes a pulse whose duration is given by the current value of a pulse list. A
pulselistisatext file that contains one pulse duration per line. It can be set up with
the command edl i st (described in the Acquisition Reference manual). The
statement vp uses thelist file given by the acquisition parameter VPLIST. When
the pulse program begins, the first duration in the list is used. The statement i vp
moves the list pointer to the next duration. If the end of thelist is reached, the
pointer is set to thefirst item. The statement i vp must be specified behind a delay,
for example:

dl ivp

0.1u ivp

The length of the delay isirrelevant; any value is allowed.

You can aso set a specific list position with an equation. For example:
“vpi dx=5
vp

The statement vp will execute the pulse defined at position 5 of the pulselist. To
theright of the equal sign, any dimensionless expression is allowed. It may contain
any of the parameterslisted in Table 1.3.

Pulse lists defined in the pulse program

Instead of setting up apulselist withedl i st , alist of pulses can aso be specified
within the pulse program using adef i ne statement, e.g.:

define list<pulse> Plist = { 10 20 30 }

This statement defines the pulse list Plist with values 10 psec, 20 psec and 30
psec. User defined pulse lists must be initialized within the definition. There are
two aternatives to assigning values directly in {} -brackets. You can specify the
filename of apulselist or the variable that contains such a filename, both in angle
brackets. Examples,

12

define |ist<pul se> P2|i st <mypul sel i st>

<$VPLI ST>

define |ist<pul se> P3list

In both cases, the file that contains the pulse list can be created with the command
edli st vp.

According to the def i ne statements above:
P1li st

executes a pulse of 10 psec the first timeit isinvoked. In order to access different
list entries, you can append the .i nc, .dec or .r es postfix to the pul se statement to
increment, decrement or reset the index, respectively. Any index operations are
performed cyclically i.e. when the pointer is at last entry of alist, the next incre-
ment will move it to the first entry. Furthermore, list entries can be specified
directly in squared brackets counting from O, i.e. the statement:

P1list[1]
executes a pulse of 20 psec according to the above definition. Lists can be exe-

cuted and incremented with one statement, using the caret postfix operator. As
such, the statement:

P1list”

isequivaent to:
Pllist Pllist.inc

Finally, you can set the index directly in an arithmetic expression within double
guote characters, appending .i dx to the pulse statement. The following example
shows the use of apulse list that is assigned within its definition:

define list<pulse> locallist = {10 20 30 40}

local list locallist.inc; pulseof 10 msec, changeindex fromOto1
locallist locallist.res; pulseof 20 msec, setindex to O

local list[2] ; pulse of 30 msec (do not interpret the index)
local list locallist.dec; pulseof 10 msec, changeindex from0Oto 3
local list ; pulse of 40 msec

"locallist.idx = 3" ; setindexto3

local listn ; pulse of 40 msec, moveindex to 0

I ocal list ; pulse of 10 msec

Caution: index operations on pulse lists only take effect in the next line. Further-

13

1516

1517

more, you cannot access two different entries of the samelist on oneline. Thisis
illustrated in the following example:

define list<pulse> locallist = {10 20 30 40}

local list” locallist ; usesthe samelist entry (10 ms) twice
| ocal | i st ; the ™ operator takes effect: 20ms
local list[2] locallist[3] ;executeslocalist[3] (40 ms) twice

Note that names for user defined items may consist of up to 19 characters, but only
thefirst 7 are interpreted: i.e Pulselistl and Pulselist2 are allowed names but they
would address the same symbal.

Manipulating pulse durations: The operator

A pulse duration can be manipulated with the operator “**“. Examples of allowed
statements:

pl*1.5

p30d1H* 3. 33

p3*oneThi rd

vp* 3

The operator must be placed behind the pul se statement. oneThird isthe name of a
macro which must have been defined at the beginning of the pulse program, e.g.:

#define oneThird 0. 33

Note that fixed pulses cannot be manipulated so the statement 10np* 0. 33 would
be incorrect.

M anipulating pulse durations. Changing p0-p31 by a constant value

Each pulse statement p0-p31 has been assigned an acquisition parameter INP[O]-
INP[31] These parameters take a duration value, in psec. The pulse program state-
mentsi puO-i pu31 add the value of INP[0]-INP[31] to the current value of pO-
p31, respectively. Likewise, dpu0-dpu31 subtract the value of INP[O]-INP[31]
from the current value of p0-p31. The statementsr pu0-r pu31 reset p0-p31 to
their original values, i.e. to the values of the parameters P[0]-P[31]. The statements
presented in this paragraph must be specified behind adelay of any length (= 0) .
Some examples.

14

dl ipu3
0. 1u dpuO
dl rpu0

1.5.1.8 Manipulating pulse durations. Redefining p0-p31 via an expression

1519

The duration of the pulsesp0-p31 isnormally given by the parameters P[0]-P[31].
You can, however, replace these values by specifying an expression in the pulse
program. The following examples show how you can do this:

“pl3=3s + aq - dw- 10"

“pl3=p13 + (pl*3.5 + d2/5.7)*td"

The result of such an expression must have atime dimension. You can therefore
include acquisition parameters such as pulses, fixed pulses, delays, fixed delays,
the acquisition time AQ and the dwell time DW within the expression. Further-

more, you can include parameters without a dimension such as the time domain
size TD. The complete list is shown in Table 1.3.

An expression must be specified between double quote characters (“ “). It can be
placed anywhere in the pulse program, aslong as it occurs before the line that con-
tains the corresponding pulse statement (which would be p13 in our example).
Note that the second expression in the example above assigns a new value to p13
each time the expression is encountered, e.g. if it is contained in a pulse program
loop.

Expressions cannot be used in labelled pulse program lines. You can, however, put
asmall duration behind alabel and put the expression in the next line.

Expressions do not cause an extradelay in the pulse program. Pre-evaluation is
applied before the pulse program is started, and the result is stored in the available
buffer memory to be accessed at run time. At run time, pre-evaluation is performed
during the cycle time of the loops in which the statements are embedded. If loops
are executed too fast, arun time messageis printed.

Manipulating the durations of user defined pulses

User defined pulses, as described in section 1.5.1.3, can be manipulated in the
same way pulses defined by p0-p31 are manipulated (see sections above).

15

d0-d31 [sec]

pO-p31 [psec]

| 0-131 (loop counters)

i n0-i n31[sec]

i np0-i np31 [psec]

aq [sec]

dw [psec]

dwov [usec]

del, de2, depa, der x, deadc [JsecC]
vd [sec]

vp [psec]

nbl ,ds, ns,nsdone,td,tdl,td2
decim

cpdti ml-cpdti n8 [sec]

cnst 0-cnst 31

Table 1.3

1.5.2 Pulsefrequency

1.5.2.1 Frequency channels

The RF frequency of a pulseis selected via the spectrometer channel numbersf1,
... ,f8 (the actual numbers of the channels depend on your spectrometer type and
accessory). A pulse on a particular channel is executed with the frequency defined
for that channel. The statements:

pl:f2
p2*0.33:f2
p30d1H+* 3. 33: 2
vp: f2

all execute a pulse on channel 2, with the duration P[1], P[2]*0.33, p30d1H*3.33
and avalues from VPLIST, respectively. The pulse frequency is the value of the

16

1522

acquisition parameter SFO2; the default frequency for channel f2. If the channel is
not specified in the pulse statement, p1, p2, ..., p31 al use the default channel f1.
The default frequencies of the channels f1-f8 are given by the parameters SFO1-
SFO8 (see the description of SFO1, NUCLEI, and edasp in the Acquisition Ref-
erence manual for more information about defining frequencies for a particular
channdl). These parameters are loaded into the synthesizer(s) before the pulse pro-
gram starts. This gives the hardware time to stabilize before the experiment begins.

Using frequency lists

You can change the frequency of achannel within a pulse program with the state-
mentsf q1-f 8. They take the current value from afrequency list. A frequency list
isatext file whose lines contain frequency values (see the command edl i st in
the Acquisition Reference manual). For example, the statement:

d1l fq2:f3

which is equivalent to:
dl fg=fqg2:f3

uses the frequency list whose file name is defined by the acquisition parameter
FQ2LIST (f g1 would use FQ1LIST, etc.). You can set FQLLIST etc. from the
eda dialog box, and you can modify a selected list with edl i st . The example
above sets the frequency of channel 3 by taking the current value from the list
defined by FQ2LIST. When f g2 is executed the first time, the current value is the
first valuein thelist . The next timef g2 isencountered (e.g. because it occurs sev-
eral timesin the pulse program, or becauseit is contained in aloop) the current
value will bethe next valuein the list, etc. At the end of thelist, the pointer will be
set to the first entry of the list. The statementsf gq1-f g8 not only set afrequency,
but also increment the list pointer to the next entry of thelist. They must be written
behind a delay. The frequency change occurs at the beginning of this delay, which
must be at least 2 psec.

Thelist can, optionally, contain afrequency offset in MHz. If it does, the fre-
quency list valuesin Hz are added to this offset. If it doesn’t, the list values are
added to the channel frequency (SFOL for f1, SFO2 for 2, etc.).

The frequency can also be set to the values of the parameters CNST0-31 or to any
number, for example:

dl fg=cnst20:f1 ; SFOn [MHz] + CNST[20] [HZ]

17

1523

dl fqg=3000:f1 ; SFOn [MHZz] + 3000 Hz

set the frequency on channel 1 to the value of CNST20 and to 3000 Hz, respec-
tively.

Frequency listsdefined in the pulse program

For Avance spectrometers, frequency lists can aso be defined in the pulse program
using thedef i ne statement. The name of alist can be freely chosen, for example:

define |ist<frequency> username = { 200 300 400 }

Thelist must be initialized, specifying alist of frequency offsets between braces,
separated by white spaces. By default, the entries are taken as frequency offsets (in
Hz) to the default frequency (SFOx) of the channel, for which thelist is used.
However, this behaviour can be changed by specifying a modifier before the first
entry of thelist, eg.:

define list<frequency> absfq = { O 300 4000 5000 6000 }
The allowed modifiers are shown in table 1.4.

O <basic frequency [MHZz]> offsetisin Hz and relative to basic freq. O
p (lower case) offset isin PPM and relative to SFOx

P (upper case) offsetisin PPM and relative to BFx

no modifier offset isin Hz and relative to SFOx

Table1.4

Instead of list entries, alist definition can also contain the name of alist file
between angle brackets, e.g.:

define list<frequency> filefq = <freqlist>

The specified file must can be created with the command edl i st f 1. Alterna
tively, you can specify $FQXLIST between angle brackets, where x is a digit
between 1 and 8. For example:

define |ist<frequency> f1list = <$FQLLI ST>
In this case the value of the parameter FOXLIST will be used as filename.

A maximum of 32 different frequency lists can be defined within a pul se program.

18

The name can be of arbitrary length, but only the first 7 characters are interpreted.

A difference between aregular frequency lists (interpreted by the f gn statements)
and afrequency list defined within the pulse program is that the latter is not
autoincremented. The list index can, however, be manipulated with postfix opera-
tors. The operators .i nc, . dec, .r es increment, decrement and reset the index,
respectively. Furthermore, you can use a caret operator () to execute the list and
increment the pointer with one statement. You can also address alist entry by spec-
ifying itsindex in square brackets []. Note that index manipulation statements are
executed at the end of the duration. This, for example, means that the statement:

dl fqglist~fl fqglist:f2
sets both channels f1 and 2 to the same frequency.

Notethat the index runsfrom 0 and will be treated modul o the length of thelist. As
such, by incrementing the index, the frequency can be cycled through alist.

You can aso set the index with arelation adding the .i dx postfix to the list name.

Example:

define |list<frequency> fglist = { 100 200 300}

ze

1pl
dl fqglist:f1 fqglist.inc ;setfreq.toSFO1+100, incr. pointer
pl:fil ; use frequency SFO1+100Hz
di fqglistnr:f1l ; set frequency and increment pointer
pl:ifl fqglist.res ; use freg. SFO1+200, set pointer to 0
dl fqglist:f1 ; set frequency to SFO1+100
pl:f1l ; use frequency SFO1+100
dil fglist[2]:f1 ; set frequency to SFO1 +300
pl:f1 ; use frequency SFO1+300
"fglist.idx = 1" ; Set pointer to entry 1
dl fqlist:f1 ; Set the frequency SFO1+200
pl:f1l ; use frequency SFO1+200
dl fqlist.dec ; decrement pointer
go=1

exit

19

1.5.3 Pulse phase

1.5.3.1 Phase programs: definition

Pulse phases are rel ative phases with respect to the reference phase for signal
detection. A phase must be specified behind a pul se statement with the name of a
phase program. For example, the statements:

10mp:f 1 ph3

p2*0. 33:f 2 ph4

p30d1H* 3. 33:f 3 ph5

vp:f4 ph6

execute pulses on the channelsf1, f2, f3 and f4, respectively. As such, the channel
frequencies would be SFO1, SFO2, SFO3, and SFO4. The channel phases are set
according to the current value of the phase programs ph3, ph4, ph5, and ph6,
respectively. If apulseis specified without a phase program, it will have the last
phase that was assigned to the channel on which the pulse is executed. Note that at
pulse program start, before any pulse has been executed, the phase on all channels
is zero.

The four examples above can aso be written in the following form:
(10np ph3):fl
(p2*0. 33 ph4):f2
(p30d1H+3. 33 ph5):f3
(vp ph6):f4

Thisform expresses more clearly that a phase is a property of a spectrometer chan-
nel.

1.5.3.2 Phase programs:. syntax

A phase program can be specified as shown in the following examples:

(1)ph1=00112233
(2)phl=(5)03241
(3) ph1={0}*4{2}*4
(4) ph1={02}"1

(5) phl={02}7172"3
(6) phl={13}7172*2
(7) phl={{02}*2} 7112

20

(8) phl = {{{Q}*2}"2"3"1} "2
(9 phi=(5){12}*2"1
(10) phl = ph2*2 + ph3

A phase program can contain an arbitrary number of phases.

Furthermore, thelist of phasesin aphase program can be spread over several lines,
for example:

ph1=0220
1331

In (1), the phases are expressed in units of 90°. The actual phase valuesare 0, O,
90, 90, 180, 180, 270, 270.

In (2), the phases are expressed in units of 360/5 degrees, corresponding to the
actual phasevalues 072, 372, 2*72, 4* 72, 1*72 = 0, 216, 144, 288, 72 degrees.
The divisor, to be specified in parentheses () and before the actual phase list, can
be aslarge as 65536 (corresponding to 16 bits). This correspondsto adigital phase
resolution of 360/65536, which is better than 0.006°.

In (3) - (9), the operators “** and “~* are used, which allow you to write long
phase programs in a compact form. For phase programs with less than 16 phases,
the explicit forms (1) and (2) are usually easier to read. The operator “*n“ (withn
=2, 3, ...) must be specified behind alist of phasesthat isenclosed in braces{ }. It
repeats the contents of the braces (n-1) times. The operator “~m* (withn=1, 2, 3,
...) must be specified behind alist of phasesthat is enclosed in braces{ }, or
behind a previous“~m"“ or behind an “*“ operator. Each “"m" operator repeats the
contents of the braces exactly once, but the repeated phase list will be incremented
by m*360/d degrees (modulo d) where d is the divisor of the phase program. If no
divisor is specified, the default value of 4 is used. The following lines display the
phase programs (3) - (9) in their explicit forms:

(3)ph1=00002222
(4)ph1=0213
(5)ph1=02132031
(6)phl1=13203113
(7)phl1=020213132020
(8)ph1=0022331122001133
(9)phl=(5)121223

21

1533

1534

1535

In (10), the phase program is the sum of two other phase program, one of which is
multiplied with an integer constant. This principleisillustrated by the following
example. Assume the following phase programs:

ph2 =021 3
ph3 = 11113333

In order to calculate ph5 = ph2* 2 + ph3, we first cal culate ph2* 2:
ph2*2 =00 2 2

Then we extend ph2 to the same size as ph3:

ph2 00220022
ph3 11113333

Now we calculate the sum of the two:
phl =11333311

In cases where phase programs are added and the size of one of them is not a mul-
tiple of the size of the other, the resulting phase program will have the length of the
smallest common multiple of the two phase programs.

Phase program position

Phase programs must be specified at the end of the pulse program (see the pulse
program examplein Table 1.1 at the beginning of this chapter). Any pulse program
can contain up to 32 different phase programs (ph0-ph31).

Phase cycling

At the start of a pulse program, the first phase of each phase program isvalid. The
next phase becomes valid with the next scan or dummy scan. When the end of a
phase program is reached, it starts from the beginning (phase cycling).

Phase pointer increment

The phase pointer in all phase programs is automatically incremented by the go
statement. However, it is also possible to explicitly switch to the next phase as
shown in the following example:

pl:f2 ph8~

p2:f2 ph8

22

1536

pl isexecuted with the currently active phase of ph8, then p2 is executed with the
next phase in ph8. The caret () postfix in the first line, increments the phase
pointer to the next phasein thelist. This phase will become valid with the next
pulse program statement that includes this phase program (note that this can be the
same statement if it isincluded in aloop).

The following exampleis equivalent to the one above:

pl:f2 ph8 ipp8
p2:f2 ph8

Only in this case the statement i pp8 is used to increment the pointer in the phase
program ph8. Please note that i pp8 is specified on the sameline aspl and there-
fore does not cause an extra delay between p1 and p2. The increment statements
i pp0-i pp31 are available for the phase programs ph0-ph31. Increment state-
ments can also be specified with adelay rather than a pulse. For example,

dl i pp7
moves the pointer to the next phase in ph7.

The statements r pp0-r pp31 can be used to reset the phase program pointer to the
first element. The statement zd automatically resets al phase program pointers to
the first item, whereas the statement ze sets the pointer such that after DS dummy
scans the pointer will be at the first element of each phase program. Phase pro-
grams that use the autoincrement feature or explicit incrementation withi pp are
not incremented by the go statement at the end of a scan.

Note that there is no statement dpp0 - dpp31.

Adding a constant to a phase program

You can change al phases in a phase program by a constant amount with the :r
option. Each phase program ph0-ph31 has a constant assigned to it, PHCORJ[0]-
PHCOR][31]. These can be set from eda, or by entering phcor O etc. on the com-
mand line. For example, withph8 = 0 1 2 3 and PHCOR[8]=2°, the phases of
the pulse:

(pl ph8ir):f2
are 2, 92, 182, 272 degrees. Without the :r option, the phase cycle of p1 would be
0, 90, 180, 270 degrees. The :r option can be used together with the caret postfix,
eg.

23

1537

1538

(pl ph8nrir):f2

Phase program arithmetic

Each of the phase programs ph0-ph31 has 3 associated statements:
i pO-i p31, dp0-dp31, r pO-r p31.

They can also be used with an integer multiplier n:
i pO*n-ip31*n,dp0*n-dp31*n.

Consider the phase programsph3 = 0 2 2 Oandph4 = (5) 0 1 2 3.The
pulse program statement:

20u ip3
increments all phases of ph3 by 90°. The next time that ph3 is encountered, its
phase cyclewill be*1 3 3 1". Likewise, the pulse program statement:

20u ip4

increments all phases of ph4 by 360/5 degrees. The next time that ph4 is encoun-
tered in the pulse program, its phase cycle will be“(5) 12 3 4“.

The statements dp0-dp31 decrement all phases of the associated phase program.
The statements r pO-r p31 reset al phases of a phase program to their original val-
ues, i.e. to the values they had before thefirsti p0O-i p31 or dp0O-dp31.

The statements:
6u i p3*2
7.5u dp4*2
increment ph3 by 2*90=180° and decrement ph4 by 2* 360/5=144°.

An increment/decrement phase program statement must always be specified
behind a delay, which must be long enough for the increment/decrement to be cal-
culated. The required time depends on the number of phasesin the phase program
and amountsto 1.5 psec per phase and channel.

Runtime Changes of the phase program increments

Thei p statement can also be used to add increments other than the amounts
defined in the definition of the phase program. Thisis done using the parameters

24

1539

CNST[0]-CNST[31] (which can have a positive or negative value). For example,
the statement:

dll i pl+cnst23
adds the value of CNST[23] to each phase of the phase program ph1.

A constant can aso be defined in the pulse program. As such it is calculated at
runtime. For example, the section:

"cnst 23=d0* 360/ 24; "
dll i pl+cnst23

calculates a phase from the current value of d0 and then putsit into the parameter
cnst 23. Then it adds this value (in degrees) to each phase of the phase program
phl. Notethati pl+cnst 23 works on the original phase program ph1l whereas

i p1(*n) works on the current phase program ph1.

As an example, the next pulse program section increments the phase at runtime
depending on the number of scans done:

"cnst5 = 20"

2 dl

pl phl

6u i pl+cnst5 ; set the phase program to the original values + cnsts °
"cnst 5= nsdone* 30"

go =2 ph31l

phl1 =02201331

Phase presetting

A pulse program statement like:
(pl ph8):f2

suggests that switching to the current phase of the specified phase program is exe-
cuted at the time the pulse begins. On Avance-AQX, however, the phase may take
a certain amount of time to become stable. For this reason, XwIN-NMR allows you
to instruct the pulse program to switch the phase somewhat earlier. Eight parame-
ters PHASPR[1]-PHASPR[8] are available, one for each spectrometer channel.
They can be set from the edscon parameter editing command or at the beginning
of the pulse program by statementslike " phaspr 1=4u". Their default valueis 3
psec. Assuch, the phase for any pulse will be set 3 psec before the pul se begins. If
you would change PHASPR[3] to 4 usec, the phase of all pulses executed on chan-

25

15.3.10

15311

nel 3 would be set 4 psec before the pulses begin.

On Avance-AQS, the phase switching delay is negligible and, as such, the parame-
ter PHASPR does not exist.

Phase setting without executing a pulse

XWIN-NMR allows you set the phase for a particular spectrometer channel without
executing a pulse. In that case, you must specify a phase program behind a delay.
Examples:

(d1 ph1):f3

(0. 1u ph3):f2

The 4-phase modulator

On Avance-AQX, the phases for the spectrometer channels f1-f8, as presented so
far, arerealized in the FCU (Freguency Control Unit) of the spectrometer, during
the digital frequency generation. For special applications such as certain solid state
experiments, an accessory is available called 4-phase modulator. This device con-
tinuously provides four phases of the current frequency: 0, 90, 180, and 270°. It
therefore allows faster switching between these phases. The following example
shows its phase program syntax:

phl = +x +y -x -y

Whenever this syntax is used, the phases will be selected from the 4-phase modu-
lator rather than from the FCU’s digital frequency generator.

The above phase program corresponds to the regular phase program:
phl = 0 90 180 270

The 4-phase modul ator has a number of internal adjustment parameters which can
be set with the command ed4ph.

The 4-phase modulator can be used with or without an HPCU. In the former case,
it must be connected to the 4-PH connector of the HPCU. In the latter case, it must
be connected to the second rs485 channel of the CCU and must be specified in the
hardware list (see aso cf). Note that spectrometers which are equipped with tran-
sistorized amplifiers rather than tube amplifiers are not equipped with (because
they do not need) an HPCU.

26

154

1541

154.2

On Avance-A QS spectrometers, the 4-phase modulator is not needed and, as such,
not supported. The reason is that the frequency generation on the SGU doesn’t
cause any phase switching delays.

Pulse power and shape

Rectangular pulses

A rectangular pulse has a constant power while it is executed. It is set to the cur-
rent power of the spectrometer channel on which the pulseis executed. The default
power for channel f1, 2, ..., f8isPL[1], PL[2], .., PL[8]. Here, PL isan acquisi-
tion parameter that consists of 32 elements PL[0] - PL[31]. It can be set from eda
or by entering pl 0, pl 1, etc. on the command line. You can set the power for a
particular channel with the statements pl 0-pl 31. For example:

dl pl5:f2

sets the transmitter power for channel f2 to the value given by PL[5]. Any pulse
executed on this channel will then get the frequency SFO2 and the power PL[5].
The pl 0-pl 31 statements must be written behind a delay. The power setting
occurs within this delay, which must be at least 2 psec.

Power lists

In addition to the PL[0]-PL[31] parameters, you can use user defined power lists
on Avance spectrometers. A user defined power list isdefined and initialized in a
single define statement, e.g.:

define list<power>pw ={ -6.0 -3.0 0}
Thedefineli st <power > key isfollowed by the symbolic name, under which
the list can be accessed in the pulse program. The name is followed by an equal

sign and an initiaization clause, which isalist of high power values, in dB,
enclosed in braces. Entries must be separated by white spaces.

You can access a power list by specifying its name, e.g.:
dl pw :f1

sets the power of channel f1 to -6.0 dB, when it is used for thefirst time. You can
move the pointer within a power list with the increment, decrement and reset post-
fix operators.i nc, .dec, .r es. For example, you can switch to the next entry of the

27

above list with the statement:

pw .i nc
Alternatively, you can use the caret (") operator to set the power and increment the
list pointer within one statement. For example, the statement:

dl pw M:f1
isequivaent to:

dl pw :f1 pw .inc
You can aso access the list index in arelation, appending .i dx to the symbolic
name, e.g:

"pw .idx = pw.idx + 1"
The above expression is equivalent to:

pw .i nc
Furthermore it is possible to access a certain list element by specifying its number
in square brackets, for example:

pw [2]

Note that list indices start with 0. All index calculations are performed modul o the
length of the list. In the above example pwi [3] = pwl [0] =-6.0.

Note that index manipulations are executed at the end of the duration. This means,
for example, that the statement:

dl pw ~:f1 pw :f2
will set both the f1 and f2 channel to the same power level.

Asan aternative to initializing alist, you can specify alist filein angle brackets,
e.g.

define list<power> fronfile = <pw i st>
Such afile can be created or modified with the command edl i st va. Instead of a
filename you can aso specify $VALIST, for example:

define |ist<power> fronva = <$VALI ST>

In this case, the filename is defined by the VALIST acquisition parameter.

28

1543

Note that the number of user defined listsis limited to 32 for each list type. The
length of the name is arbitrary, but only the first 7 characters are interpreted.

The following example shows the use of an initialized power list:

Example:
define list<power> pw = { 10 30 50 70 }
ze
1dl pwi:f1 pw.inc ; set power on f1 to 10dB, incr. pointer
dl pw:f2 pw.dec ; set power on f2 to 30dB, decr. pointer
dl pwi[2]:f3 ; set power on f2 to 50dB
"pwl .idx = pw.idx + 3" ;setthepointerto0to3
dl pw *:f4 ; set power on f4 to 70dB, incr. pointer
(pl):f1 (p2):f2 (p3):f3 (p4):f4
go=1
exit
Shaped pulses

A shaped pulse changes its power (and possibly phase) in regular time intervals
whileit is executing. The pulse shape is a sequence of numbers (stored in afile,
see below) describing the power and phase values which are active during each
timeinterval. Theinterval length is automatically calculated by dividing the pulse
duration by the number of power values in the shapefile. If thisislessthan 200
nsec, an error message is displayed which tells you by which amount the pulse
duration must be increased.

The next 3 examples generate shaped pulses.

(10np: sp2 ph7):f1
(pl:spl ph8):f2
(p30d1H* 3. 33:sp3 ph9):f3

The pulse durations are 10 millisec, P[1], and p30d1H* 3.33, respectively. The
pulses are executed on the frequency channelsfl, f2, and 3 (i.e. the pulse frequen-
ciesare SFO1, SFO2, and SFO3), respectively. The pulse shape characteristics are
described by the entries 2, 1, and 3 (corresponding to : sp2, : spl, and: sp3) of
the shaped pulse parameter table. Thistable is displayed when you click the SPO7
button within eda. The table has 32 entries with the indices 0-31. You may use the
statements: spO0 - : sp31 to refer to the entries 0-31, respectively. Asyou can see

29

from the examples, aphase program can be appended to a shaped pulsein the same
way it can be appended to arectangular pulse. The current phase of the phase pro-
gram is added to the phase of each component of the shaped pulse.

Note that the statement:
(vp:sp4 phl0):f4
isincorrect because shaped pulses with vp are not supported.

Each entry of the shaped pulse parameter table has 3 parameters assigned to it: a
power value, an offset and afile name.

File name

The name of ashapefile. A shape file can be generated with the command st . or
from the Shape Tool interface (command st di sp). Shapefiles are stored on disk
in the so called JCAMP format. They reside in the directory:

$XWINNMRHOME/exp/stan/nmr/lists'wave/

After its header, a shape file contains alist of entries, one entry for each pulse
shape interval. Each entry consists of a apower value (in percent) and a phase
value (in degree). The power value defines the percentage of the absolute power
value (see below).

Offset frequency

The shape offset frequency allows you to shift the frequency of the shaped pulse
by acertain amount (in Hertz). This shift isrealized by applying phase changes
during the shaped pulse'stime intervals. As such, phase coherency of the fre-
guency is maintained.

Power value [dB]

Thisisthe absolute power value of the pulse shape. The actual power value of a
particular shapeinterval is the absolute power value multiplied by the relative
power value of that interval, as specified in the shapefile.

Rather than using power value specified by SP07, you can also use the power
valuethat is currently active on the channel that you use. You can do that with the
(current power) modifier of the sp statement as shown the following example:

d20 pl9:f1 ; et power on channel f1to PL[9]
pl:spO(currentpower):f1 ; shaped pulsewith abs. power PL[9]
di ; power isreset to PL[1], default for f1

p2:f1 ; rectangular pulse with power PL[1]

30

If, in thisexample, the value of PL[9] isvery different from the value of SP[1], the
pul se shape may be compressed. The reason for thisisthat the CORTAB correc-
tion table for SP[1] is applied rather than for PL[9].

You can access the SP07 table entries from eda. However, you can also set the
entries from the command line. For example, spnanb allows you to set thefile
name of entry 5, spof f s2 sets the frequency offset of entry 2 and sp15 setsthe
absolute power value of entry 15.

Using shapeswith variable pulse length

A shaped pulse can be used in connection with a variable duration. For example,
the pulse p1 has aduration P[1] and can be varied with statementslikei pul or
"pl=p1+0. 5ni.
For a shape consisting of 1000 points the following restrictions apply:

» the minimum execution length is 1000* 3* 50 ns = 150 Lisec.

» the maximum execution length is a few seconds

» theincrement must be a multiple of 50 psec. Any other increment values

might result in spikes after the shape.

When a shape is specified too short or too long, an error message will be printed
and the shape will be used with the previous settings!

The length of a shaped pulse can be varied with a statement like:
i pul

or with arelation like:
"pl = pl + 0.5nf

In both cases, the variation of a shape pulse length takes 4 psec per channel.

Note that varying the length of a shape with non zero offset frequency will change
the offset frequency, as the frequency shift is obtained via phase shifting. This
phase shift won’t be recal culated during execution, so the offset will be changed
inverse proportional to the duration. (Doubling the duration means cutting the off-
set in half). An warning will be printed, when you change the duration of a shape
with offset.

31

1544

1545

1546

Shaped pulse presetting

On Avance-AQX spectrometers, the parameters SHAPPR[1]-SHAPPR[8] are used
for shaped pulse presetting. Please refer to the description of the command
edscon inthe Acquisition Reference manual for details on SHAPPR. On
Avance-A QS spectrometers, phase presetting is not required.

Fast Shapes

Regular pulse shapes as described above need a short delay before and after the
pulse of ~4 psec. On Avance-AQS, you can also generate the so-called fast shapes.
They do not require this delay so fast shaped pulses can be executed consecutively
in aloop or they can be executed right before or right after arectangular pulse. Fast
shape pulses and can be executed with the options :spf 0 - :spf 31. They differ
from normal shapesin the following respects:

» They do not change the power setting but use the current setting.

» The minimum time for each interval is 350 nsec whereas for normal shapesitis
between 50 and 100 nsec. If this limit is violated, the pulse programs will stop
with the error message: "TAQNEXT while FIFO busy".

» Thetiming of the shape cannot be changed during pulse program execution.

» Thetotal time of the entire shape must be exactly the time for oneinterval times
the number of intervals in the shape pulse, where the timing resolution of the
time for the intervalsis 50 ns (whereas the time resolution for normal shapesis
12.5ns).

Fast shapes are typically used for solid states experiments.

Amplitude Lists

On Avance-AQS, you can define initialized amplitude listsin a pul se program, for
example:

define |ist<anplitude> aml={70}

The amplitude values represent the percentage of the power of arectangular pulse.
The above list isinterpreted by a statement like:

di11l ant:f1

which reduces the power on the f1 channel to 70% of PL[1] (assuming it was at its

32

default value PL[1]). All rectangular pulses on f1 will then be executed with this
reduced power. A statement like:

d12 pl 1:f1

will reset the power on channel f1 to PL[1]. Furthermore, a statement like:
pll:spl:f1 phl

which executes a shaped pulse, resets the power on f1 to PL[1] after is hasfin-

ished.

An example of apulse program segment using an amplitude list is:
define |ist<anplitude> am={70}

pl phl ; rectangular pulse on f1 with power PL[1]
dil ami:f1 ; Set the power on f1 to 70% of PL[1]

pl ph2 ; rectangular pulse on f1 with 70% of PL[1]
dl1

pll:spl:f1 phl ; shape pulsewith power SP[1]

dl1

pl phl ;rectangular pulse on f1 with power PL[1]

1.5.5 Generating pulseswith a certain flip angle

The pulse generation statements described so far do not allow you to specify aflip
angle. Theflip angleisimplicitly defined by pulse duration and power. In fact, flip
angle, power, and duration are interdependent: when two of them are known, the
third one can be calculated. XwIN-NMR provides the possibility of storing cali-
brated 90° pulses (using the pulse widths and the corresponding power levels) for
different probe heads and solvents (see command edpr osol). Based on these
values, the statement:

pul se(fli pangl e, power, duration)

generates a pulse of the specified flip angle. The value of two of the three argu-
ments must be specified, the third argument can be set to auto.

Example 1.
pul se(90 deg, 0 dB, auto):f1l phl

Generate a90° pulseusing apower level of 0 dB. The program calculatesthe
required pulse width and executes the pulse on channel f1 using the phase
program phl. Please note that a space character must be specified before the

33

deg and dB units.

Example 2:
pul se(30 deg, pl2, auto):f2 phl

Generate a 30° pulse using the power given by the acquisition parameter
PL[2]. The program calcul ates the required pulse width and executes the
pulse on channd 2 using the phase program ph1. You can usepl 0-pl 31 as
the second argument, referring to the parameters PL[0]-PL[31].

Example 3:
pul se(45 deg, auto, 5u):f2 phl

Generate a 45° pulse using a pulse width of 5 psec. The program calculates
the required power and executes the pulse on channel f2 using the phase
program ph1. You can append’u’, 'm’, or 'S’ to the number in the third
argument to indicate microseconds, milliseconds, or seconds.

Example 4.
pul se(45 deg, auto, pl):f2 phl

Generate a45° pulse using apulsewidth defined by the acquisition parameter
P[1]. The program calcul ates the required power and executes the pulse on
channel 2 using the phase program ph1. Please note that you can specify
P[0]-P[31] asthe third argument, but not pulses defined by the def i ne

pul se statement.

Example 5:
pul se(90 deg, auto, 10m:spl:fl phl

Generate a 90° shaped pulse using a pulse width of 10 msec. The program
calculates the required power and executes the pulse on channel f1 using the
phase program ph1l. Please note: Power calculation uses the same formula
for rectangular and shaped pulses. To account for the deviation from arec-
tangular pulse, a power correction value must be specified for shaped
pulses. The program expects this number (in db) in the corresponding Power
entry of the shaped pulse parameter table. In this example (: sp1), the cor-
rection value is taken from entry 1 (you can set this value from eda or by
entering spl on the command line).

Example 6:

pul se(auto, pl2, p2):f2 ph4

Generate a pulse using awidth defined by the acquisition parameter P[2],
and a power defined by PL[2]. Theflip angle can be viewed with the com-
mand ased. The above statement is equivalent to:

p2:f2 ph4

1.6 Delay generation

Table 1.5 shows the available types of statements for the generation of delays. The
duration of adelay corresponds to the name of the delay statement.

Generate a delay whose duration is taken from the

40, db, - a3t acquisition parameter D[0], ..., D[31], respectively.
Generate a delay whose duration is taken from the
do-r. ..d31-r acquisition parameter D[0], ..., D[31] and which is

randomly varied. The maximum variation (in per-
cent) is defined by the acquisition parameter V9.

3.5u,10m 0. 1s

Generate adelay of fixed length: u = psec, m=
MSEC, S = SEC.

conpensati onTi me

Generate a delay whose name is defined with a
def i ne del ay statement, and whose duration is
defined by an expression.

vd

Generate adelay whose duration is taken fromin a
delay list.

del, de2, de, depa,
der x, deadc

Generate adelay of length DE1, DE2, DE, DEPA,
DERX, DEADC, respectively.

dw, dwov Generate adelay of length DW, DWOQOV.
aq Generate adelay of length AQ.
Table 1.5 Delay generation statements
1.6.1 dO-d31

The statement:

35

162

1.6.3

164

do

executes a delay of width D[Q], where D[Q] is an acquisition parameter. It is set
from eda, or by typing dO on the command line. Likewise, the statement:

d1

executes adelay of width D[1].

Random delays

The statement:
do:r

executes a delay of width D[0] which is varied randomly. The parameter V9 speci-
fies, in percent, the maximum amount which is added to or subtracted from D[1].
As such, the effective delay varies between 0 and 2*D1. It can be set from eda, or
by typing v9 on the command line.

Please note that the gs command ignoresthe: r option.

Fixed length delays

The statement:
10m

executes a delay of 10 msec (called afixed delay because its duration cannot be
manipulated, see below). The duration must be followed by u, m or s. These units
indicate microseconds, milliseconds, and seconds, respectively.

User defined delays

The statement:
define delay conpTi nme

defines conmpTi e to be adelay statement and the statement:
“conpTi me=d1*0. 33“.

isthe expression that definesits duration. Note that the double-quote characters (*)
are obligatory.

With the above statements, the statement:

36

conpTi e

executes a delay whose name is defined in the pulse program, and whose duration
isdetermined by an arithmetic expression. Thedef i ne statement must be inserted
somewhere at the beginning of the pulse program, before the actual pulse
sequence. The defining expression must also occur before the actual pulse
sequence. It is evauated at compile time of the pulse program, not at run time.

Names for user defined delays must consist of a phanumeric characters, and the
first character must be an al phabetic character. The maximum length of the nameis
11 characters. Caution, do not use any of the reserved words like ,adc', ,go’,
,pulse’ etc. as adelay name.

1.6.5 Variablelist delays

The statement:
vd

executes a delay whose duration is given by the current value of avariable delay
list. A delay list isatext file that contains one delay per line. Delay lists are set up
withthecommand edl i st vd (described in the Acquisition Reference manual).
The statement vd uses thelist file defined by the acquisition parameter VDLIST.
When the pulse program is started, the first duration in the list is used. The pulse
program statement i vd can be used to movethelist pointer to the next duration. If
the end of thelist is encountered, the pointer is reset to the beginning. The state-
ment i vd must be specified behind adelay, for example:

dl ivd
0.1u ivd
The length of the delay isirrelevant, any valueis allowed.

Itisalso possible set the list position with an equation. Example:

"vdi dx=5"
vd

Here, vd will execute adelay whose duration is selected from position 5 of the
delay list. To theright of the equal sign any dimensionless expression is allowed.
This may contain parameters from Table 1.3.

37

1.6.6 User defined delay lists

As an aternative to using the vd statement, alist of delays can aso be specified
with adef i ne statement in the following way:

define list<delay> Diist ={ 0.1 0.2 0.3}

This statement defines the delay list Dlist with the values 0.1sec, 0.2sec and
0.3sec. Instead of delay values, you can specify alist filenamein the defined state-
ment. There are two way of doing this: you can specify the actual filename or
$VDLIST, both in <>. In the latter case, the file defined by the acquisition parame-
ter VDLIST isused. For example:

define |ist<del ay> D2li st
define |ist<del ay> D3li st

<nydel ayl i st >
<$VDLI| ST>

In both cases, the file an be created or modified with the command edl i st vd.
In a pulse program that contains the statements above, the statement:
D1ilist

executes adelay of 0.1secondsthe first timeit isinvoked. In order to access differ-
ent list entries, the list index can be incremented by adding .i nc, decremented by
adding .dec or reset by adding .r es. Index operations are performed modulo the
length of thelist, i.e. when the pointer reachesthe last entry of alist, the next incre-
ment will move it to the first entry. Furthermore, a particular list entry can be spec-
ified as an argument, in squared brackets, to the list name. For example, the
statement:

D1l st[1]

executes adelay of 0.2 seconds. Note that the index runsfrom 0 to n-1, wherenis
the number of list entries.

Lists can also be executed and incremented with one statement, using the caret
postfix operator. For example, the statement:

Dilist”
isequivaent to:
Dilist Dllist.inc

Finally, you can set the index with an arithmetic expression within double quotes
using .i dx postfix. The following example shows the usage of an initialized delay

38

list:
define list<delay> locallist = {0.1 0.2 0.3 0.4}

locallist locallist.inc ;delayof0.1s, setindex fromOto 1
locallist locallist.res ;deayof0.2s setindextoO

l ocal list[2] ; delay of 0.3s
locallist locallist.dec ;deayof0.1s, setindex fromOto 3
| ocal |i st ; delay of 0.4s
"locallist.idx = 3" ; setindex to 3
|l ocal list” ; delay of 0.4s, set index from 3 to O
| ocal | i st ; delay of 0.1s

Note that there are two restrictions on the multiple use of delay lists within the
sameline:

* Index operations take effect from the next line on

» Furthermore, you cannot access two different entries of the samelist in one
pulse program line asillustrated in the following example:
locallist” locallist ; executes the first list entry (0.1s) twice

| ocal |i st ; increment takes effect now (0.2s delay)
local list[2] locallist[3] ;executesthethirdentry (0.4s)twice

Note that names for user defined items may consist of up to 19 characters but only
the 7 first are interpreted: i.e Delaylistl and Delaylist2 are allowed names but
would address the same symbal.

1.6.7 Special purpose delays

These are the delay statements del, de2, de3, dw, and aqg aslisted in Table 1.5.
They are used in pulse programs in which the acquisition is started with the adc
statement rather than with go=I abel .

1.6.8 Manipulating delays: The operator *

A delay can be manipulated by the “**“ operator. Examples of allowed statements
are:

di*1.5
conpensati onTi ne* 3. 33
d3*oneThird

vd* 3

39

The* operator must be specified behind the delay statement, not before. oneThird
is the name of a macro that must be defined at the beginning of the pulse program
with astatement like #def i ne oneThi rd 0. 33. Note that a statement like
10n* 0. 33 would be incorrect, since 10mis afixed delay.

1.6.9 Manipulating delays: Changing d0-d31 by a constant value

The delays executed by d0-d31 can be incremented or decremented according to
the acquisition parameters IN[0]-IN[31]. These parameters contain a duration (in
seconds). The pulse program statementsi d0-i d31 add IN[O]-IN[31] to the current
value of d0-d31, respectively. Likewise, dd0-dd31 subtract IN[0]-IN[31] from
the current value of d0-d31. The statementsr dO-r d31 reset d0-d31 to their origi-
nal value, i.e. to the values of the parameters D[0]-D[31]. The statements presented
in this paragraph must be specified behind a delay of any length. Examples:

dl id3

0. 1u ddo

dl rdo

In Bruker pulse programs, D[0] and D10 are used as incrementable delays for 2D

and 3D experiments, INO and IN10 are the respective increments which are used to
calculate the sweep widths SW(F1) and SW(F2), respectively (see the description
of INO, IN10 in the Acquisition Reference manual).

1.6.10 Manipulating delays. Redefining d0-d31

The duration of the d0-d31 statementsis normally given by the parameters D[0]-
D[31]. However, you can overwrite these values in the pulse program using an
expression in C language syntax. The following examples show some of the possi-
bilities:

“d13=3s + aq - dw-10“

“d13=d13 + (pl1*3.5 + d2/5.7)*td"

The result of such an expression must have atime dimension. You can therefore
include acquisition parameters such as pulses, fixed pulses, delays, fixed delays,
acquisition time AQ, dwell time DW etc. within the expression. Furthermore, you
can include parameters without a dimension such asthe time domain size TD. The
complete list is shown in Table 1.3. An expression must be double-quoted (* “). It
can beinserted anywhere in the pulse program, aslong as it occurs before the
delay statement that uses the expression (d13 in our example). Please note that the

40

1611

1.7

second expression in the example above assigns anew valueto d13 each time the
expression is encountered, for example in aloop.

Manipulating the durations of user defined delays

You can define your own delay statements using adef i ne statement like:
define del ay conpensationTi ne

at the beginning of the pulse program. This delay is executed by the statement:
conpensati onTi ne.

The delay length must be defined with a statement like:
“conpensati onTi me=d1*0. 33“.

For such an expression the same rules apply as for the manipulation of d0-d31,
described in the previous section.

Note: The defining expression of a user defined delay must occur before the start
of the actual pulse sequence. It is evaluated at compile time of the pulse program,
not at run time.

Simultaneous pulses and delays

171

Rules

The following rules apply in pulse programs:
1. Pulses and delays specified on subsequent lines are executed sequentially.

2. Pulses and delays which are specified on the same line, and which are enclosed
in the same set of parentheses or without parenthesis are executed sequentially.

3. Pulses and delays which are specified on the same line, and which are enclosed
in different sets of parentheses, are executed simultaneously. The first item
within a set of parentheses is started at the same time asthe first item in any
other set of parentheses. You can specify an arbitrary number of sets of paren-
theseson aline.

41

1.7.2 Examples

1721 Rulel

The pulse program section:

(pl phl):f1
100u
(p2 ph2):f2

executes a pulse on channel f1, followed by adelay, followed by a pulse on chan-
nel f2 (Figure 1.1).

|
f1 pll 100u !
f2 1 p2

Figurel.1l Rules1and 2: An example

1722 Rule2

The pulse program section:

(pl phl 100u):f1
(p2 ph2):f2

executes a pulse on channel f1, followed by a delay, followed by a pulse on chan-
nel f2 (Figure 1.1).

1.7.2.3 Rule3

The pulse program section:

(pl phl):f1 (100u)
(p2 ph2):f2

executes a pulse on channel f1.

At the same time, the 100 pisec delay begins, sinceit is enclosed in a separate set of

42

parentheses. The pulse on channel 2 is not executed before either p1 or 100u have
passed, whichever islonger (Figure 1.1)..

f1 pl |

2
9 100u p—‘

Figure 1.2 Rule 3: example 1

The following exampleis atypical section of a DEPT pulse program:

(p4 ph2):f2 (pl phd4 d2):f1
(p0 ph3):f2 (p2 phb):f1l

The pulses p4 and p1 begin at the same time, p4 on channel f2 and p1 on channel
f1. The pulsesp0 and p2 start simultaneously, but not before the sequence with the
longest duration of the previous line has finished (Figure 1.3).

f1 pl d2 p2

9 p4 pO

Figure 1.3 Rule 3: DEPT example

The following 2 lines have been extracted from the colocqf Bruker pulse program.

(d6) (dO p4 ph2):f2 (dO p2 ph4):f1
(p3 ph3):f2 (pl phb):f1l

We have three sets of parentheses in this case. Thefirst item in each set of paren-
thesis, i.e. d6 and dO, start at the same time. After d0, p4 on channel f2 and p2 on
channel f1 start smultaneously. Assuming that d6 islarger than d0+p4 and
d0+p2, the second line is executed after d6 has finished.

43

A final example for rule 3 isaline from the hncocagp3d Bruker pulse program:
(pl3:sp4 phl):f2 (p21 phl):f3

The shaped pulse p13 on channel f2 is started simultaneously with the rectangular
pulse p21 on channel f3.

45

Chapter 2

Decoupling

2.1 Decoupling

2.1.1 Decoupling statements

Table 1.5 shows the available types of decoupling statements. Composite pulse
decoupling is discussed in more detail in the next section of this chapter.

cw

continuous wave decoupling

hd

homodecoupling

cpdsl, .. ,cpds8

composite pulse decoupling with CPD sequence 1, ...,
8, synchronous mode

cpdl, .. ,cpd8

composite pulse decoupling with CPD sequence 1, ...,
8, asynchronous mode

do

switch decoupling off

Table 2.1 Decoupling statements

Each pulse program line can contain one (and only one) decoupling statement. For

example, theline:

46

212

2.13

dl cw f1l

turns on cw-decoupling on channel f1 at the beginning of delay d1. Theline:
go=2 cpdsl:f2

turns on composite pulse decoupling on channel 2 at the start of the FID detection.

Decoupling statements are allowed in pulse program lines that contain a delay
statement or the go statement, but not in lineswith pulses, expressions or any lines
with any of the statementsadc, rcyc, | o,i f or got o.

Once decoupling isturned on, it remains on, until it is explicitly turned off with
do. For example:
0.1u do:f1l

turns decoupling off on channel f1.

Decoupling frequency

The decoupling frequency is selected by specifying the spectrometer channel
behind the decoupling statement. In contrast to pulse statements, decoupling state-
ments must be specified with! For example:

dl cw f2
turns on cw decoupling on channel f2, i.e. with the frequency SFO2. Thissyntax is

the same as used for selecting pul se frequencies (see the chapter 1.5.2). The state-
ment:

0. 1u cpds1:f3

turns on the composite decoupling sequence 1 on channel {3, i.e. with the fre-
quency SFO3. The statement:

3mdo: f3

terminates decoupling on channel 3 at the beginning of the 3 msec delay.

Decoupling phase

The relative phase of the decoupling frequency can be controlled using a phase
program. Thisis equivalent to controlling the phases of pulses (see chapter 1.5.3).
Examples:

47

(d1 cpdsl ph2):f3
0.1u (cw phl):f2

Note that phase cycling (see chapter 1.5.3.4) is applied to phase programs speci-
fied behind decoupling statements in the same way that phase programs are speci-
fied with pulses. A simple example demonstrating this feature is the pul se program
section:

Im (cw phl):f2

dl do:f2

which is equivalent to:

(1np phl):f2
di

A 1 millisecond pulseis executed on channel 2, followed by adelay d1. Its phase
is cycled according to phase program ph1.

2.2 Composite pulse decoupling (CPD)

2.2.1 General

Composite pulse decoupling, as opposed to cw and hd decoupling, offersalarge
degree of freedom to set up your own decoupling pulse sequences. Up to 8 differ-
ent CPD sequences can be used in a pulse program. For example, the line;

dl (cpdsl ph2):f3 (cpds2 ph4):f2

starts, at the beginning of duration d1, CPD sequence 1 on channdl {3 and, simulta-
neously, CPD sequence 2 on channel f2. CPD sequence 1 is obtained from a text
file defined by the acquisition parameter CPDPRGL. Likewise, CPD sequence 2 is
obtained from atext file defined by the acquisition parameter CPDPRG2, etc. A
CPD sequence (= CPD program) can be a Bruker delivered sequence like
WALTZ16, GARP or BB or it can be a user defined sequence. CPD sequences can
be set up with the command edc pd (as described in the Acquisition Reference
manual). Table 2.2 shows the statements available to start a CPD sequence; and
Table 2.3 shows the statements available to build a CPD sequence.

2.2.2 Syntax of CPD sequences
The syntax of CPD sequences is demonstrated by examples. Table 2.4 shows the

48

Start decoupling using the CPD program
cpdsi, ... ,cpds8 CPDPRGL, ..., CPDPRGS. The decoupling
sequence will start at line 1.

Likecpdsi1-cpds8, however, the decou-
cpdl, ... ,cpd8 pling sequence will continue from theline
where it was stopped using do.

Channel selector. To be appended to thecpd
statements.

Same asthecpd(s) statements above,
except that the transmitter gate for the speci-
fied channel will not be opened. Gating is
controlled by the main pulse program, and
can be tailored by the user.

:f1,..,:f8

cpdngsl, .. ,cpdngs8
cpdngl, ... ,cpdng8

Table 2.2 Available cpd statements

realization of Broadband and Garp decoupling with CPD sequences. Each
sequence is an infinite loop as indicated by the last statement:

junp to 1

Asin pulse programs, the pulse width in CPD programs can be specified as a fixed
pulse, (e.g. 850up) or with the statements p0-p31. The Garp sequence shows the
usage of thel o t o statement.

The Garp sequence, as well as the sequencesin Table 2.5, make use of the state-
ment pcpd to generate pulses. This enables the execution of the same sequence for
different nuclei on different channels. For example, when executed on channel 2
(f3), the pulse duration of pcpd is given by the parameter g[2] (PCPD[3]). This
allows you to specify the 90° pulse width for two different nuclei in PCPD[2] and
PCPDI 3], and decoupl e both nuclei within the same pulse program using the same
CPD program.

Table 2.5 shows two CPD sequences based on shaped pulses. Shapes are specified
in the same way they are specified in pulse programs using the :sp0, ..., :sp31
pulse selector options. The examples demonstrate the order in which duration mul-
tiplier, shape selector and phase must be specified.

The sequencesin Table 2.4 and Table 2.5 do not contain a power setting statement.

49

po, ..., p31 | Generate pulseswith durations P[Q], ..., P[31].
10up, 5np, 2. 5sp | Generate pulsesin micro-, milli-, and seconds
pcpdl, ..., pcpd8 | Generateapulsewith duration according to PCPD[1],

..., PCPD[8], depending on the channel where the
CPD sequence is executed (use eda to set PCPD).
do, ..., d31 | Generate delayswith durations DO, ..., D31.
10u, 5m 2. 5s | Generate delays in micro-, milli-, and seconds.
*3.5 | Multiplier. Can be appended to pO-p31 or dO-d31.
:135. 5 | Phasein degrees. Can be appended to pul ses.
:sp0, ..., : sp31l | Shaped pulse selectors. Can be appended to pulses.
pl = | Power specifier (see examplein Table 2.5):
pl =5 indB
pl =sp13 according to shaped pulse parameters SP[0]-[15]
Pl =pl 25 | according to PL[O]-[15]
fg= | Frequency change
fq=2357 | in Hz (relative to SFOL1 for channel 1, SFO2 for 2...)
fg=cnst 25 | from the parameters CNST[0]-[31]
fa=f a2 | from the frequency list specified in FQ2LIST
;| Begin of acomment (until end of line)
lotolabel timesn | Looptolabe ntimes
junp to label | Branchto label. Usually the last statement.
#addphase .
#set phase Specia phase control statements

Table 2.3 statements available to build CPD sequences

Therefore, the current power setting of the main pulse program for the respective
channel isvalid.

The following section of a pulse program starts a CPD program on channel 2, but
keeps the f2 transmitter output disabled (statement cpdngs2) except for the peri-
ods given by p2. The p2 pulse actually serves as a gating pulse for CPD decou-
pling. It should not be specified with a phase program in order to prevent
overwriting the CPD program phases.

50

1 90up: 0
160up: 180
240up: 0
570up: 0
680up: 180
810up: 0
960up: 180
1140up: 0
1000up: 180
850up: 0
710up: 180
200up: O
110up: 180

jump to 1

1 pcpd*0.
pcpd*0.
pcpd* 2.
pcpd* 2.
pcpd*O0.

pcpd*O0.

339: 0
613: 180
864: 0
981: 180
770: 0

.593:0

times 2

. 339: 180

613: 0

. 843: 180
.729: 0
. 593: 180

times 2

Table 2.4 Broadband and GARP CPD sequences

1 pcpd*2:spl5:0
pcpd*2: spl5: 0
pcpd*2: spl5: 180
pcpd*2: spl5: 180
pcpd*2: spl5: 180
pcpd*2: spl5: 0
pcpd*2: spl5: 0
pcpd*2: spl5: 180
pcpd*2: spl5: 180
pcpd*2: spl5: 180
pcpd*2: spl5: 0
pcpd*2: spl5: 0
pcpd*2: spl5: 0
pcpd*2: spl5: 180
pcpd*2: spl5: 180
pcpd*2: spl5: 0

junp to 1

1 pcpd*14. 156: sp15:
pcpd*14. 156: sp15:
pcpd*14. 156: sp15:
pcpd*14. 156: spl5:
pcpd*14. 156: sp15:

2 pcpd*14. 156: spl5:
pcpd*14. 156: spl5:
pcpd*14. 156: spl5:
pcpd*14. 156: spl5:
pcpd* 14. 156: sp15:

loto 2t

inmes 2

3 pcpd* 14. 156: spl5:
pcpd* 14. 156: sp15:
pcpd* 14. 156: sp15:
pcpd* 14. 156: sp15:
pcpd* 14. 156: sp15:

junmp to 1

60
150
0
150
60
240
330
180
330
240

60
150
0
150
60

Table 2.5 MLEV SP and MPF7 CPD sequences

lu cpdngs2:f2
(pl phl dl):f1

51

1 (p2 d2):f2
loto 1 tines 10
loto 2 tines 10

2.2.3 Phase setting in CPD programs. #addphase, #setphase

The phase specified within a CPD program can be added to the phase specified in
the pulse program (#addphase) or it can overwrite the pulse program phase (#set-
phase). Note that #addphase is the default mode. It only needs to be specified if
#set phase was used and you want to switch back to #addphase.

Example 1:
Pulse program statement to start the CPD sequence:
dl cpds2:f2 ph2
CPD program statements:

#addphase
pcpd: 180

Resulting phase of the pcpd pulse: 180 plus the current phasein ph2.
Example 2:
Pulse program statement to start the CPD sequence:
dl cpd2:f2 ph2
CPD program statements:

#addphase
pcpd: spl5

Resulting phase of the pcpd shaped pulse: shaped pul se phase (according to
the phases in the shape file) the current phase in plus ph2.

Example 3:
Pulse program statement to start the CPD sequence:
dl cpd2:f2
CPD program statements:

52

224

2241

2242

#set phase
pcpd: spl5: 180

Resulting phase of the pcpd shaped pulse: shaped pul se phase (according to
the phases in the shape file) plus 180.

Please note that, on Avance-AQX, a phase program should not be used with
acpdn statement since the FCU does not support the real-time addition of
more than two phases. On Avance-AQS, however, you can use cpdn state-
ments with phase programs.

Frequency Setting in CPD Programs

There are three ways to change the frequency of the channel where the CPD
sequence is applied. Freguency setting in CPD programs is the same asin pulse
programs except that the channel specification after the statement is not necessary.

Frequency Setting from Lists

Thefirst method to set the frequency isusing afrequency list. The statementsf q1-
f g8 interpret the parameters FQ1LIST-FQ8LIST, set the frequency from the cur-
rent list entry and move the list pointer to the next entry. In contrast to the lists used
pulse programs, lists used in CPD programs are expanded at compile time, not at
run time. In the following example, the first f q1 statement uses the first entry of
the frequency list, the next statement the second entry. If the frequency list con-
tains more than 2 entries, only the first two will be used.
1 pcpd: 0 fg=fql
pcpd: 180 fg=fql
jum to 1

Like in pulse programs, the frequency offset can be specified in two ways. either
the offset is at the top of thelist in MHz, or no offset is specified in thelist. In the
latter case, the measure frequency of the appropriate channel (SFOL1 for F1, SFO2
for F2, etc.) isused aslist offset.

Freqguency setting using the parameters CNST0-31

The statement f g=cnst 25 will set the frequency SFO1 + CNST25 [HZz]. The
parameter CNST 25 can aso be modified from the gs window. If used on channel
F2, the basic frequency SFO2 instead of SFO1 will be used etc.

53

2243

2.2.5

2251

Direct Specification of Frequencies

The statement f g=3000 will set the frequency SFO1(2,3...) + 3000 Hz.

L oop statementsin CPD programs

The genera form of aloop statement is:
lo to label tinmes n

where label can be any number. The loopcounter n can be a number or asymbolic
loopcounter 10 - 131, where the latter interpret the parameters L[0] - L[31]. It must
be equal to of greater than 1.

Loop counters defined in the pulse program can also be used in the CPD program.

For infinite CPD programs (which are terminated from the pulse program by the
statement do: f n) thereisaspecia j unp t o | abel statement which executes an
unconditional jump to the specified label.

M anipulation of loop countersfrom the main pulse program

BILEV decoupling

You can manipulate the loopcounter of a CPD program after each scan according
to an arithmetic expression in the following way:

bilev: "lI5=nsdone%+1"

This means that the loopcounter | 5 will be modified after each scan according to
the above equation. The modification will take effect immediately after the scan.
The pulse program should be written such that the loopcounter is always greater
than zero. The variable loop counter then can be used to modify the CPD program
such that the beginning changes with each scan.

A bi | ev statement in a CPD program automatically changes the cpd statement in
the pulse program into the corresponding cpds. This meansthat the CPD sequence
is not continued at the point where it was stopped before, but starts from the begin-
ning each timeit is called.

If a CPD program containsabi | ev statement, the cpd statement that calls the
CPD program works like acpds statement. This means that the CPD sequenceis
not continued at the point where it was stopped before, but starts from the begin-

ning each timeit is called.

55

Chapter 3

L oops and conditions

3.1 Loop statements

The genera form of aloop statement is:
lo to label tinmes n

Example 1:
| abel 1, d1
pl:f2
lo to labell tines 10
p2:f2

Note that alabel can be an arbitrary string, such as| abel 1, followed by a

comma, or a number, such as 2, without acomma. Thel o statement in this
example, although specified on aseparate line, does not cause an extra delay
between the p1 and p2 pulse statements.

Example 2:

| abel 1, pl:f1l

| abel 2, d1
pl:f2
lo to label2 tines 10
loto labell tines 5

56

p2:f2

Thefirst| o statement in this example does not cause an extradelay in the
pulse program. However, any further | o statement will add adelay of 2.5
psec. XWIN-NMR will display a corresponding message when the pulse pro-
gram compiler isinvoked, i.e. when entering one of the commandsgs, zg,
go, or pul sdi sp.

Thel o statement exists in a number of variations as shown in Table 3.1.

lo to label tines 5 The loop counter is a constant.

The loop counter is TD, the time domain sizein the
lo to label times td | acquisition dimension (to be set with the command
t d, orin theleft columnin eda).

Only used in 2D or 3D pulse programs. The loop
lo to label times tdl | counterisF1-TD (to be set with command 1t d for
2D data sets or in the right column in eda).

The loop counter is the parameter NBL (see the

lo to | abel tines nbl statements wr , st , st 0)

Theloop counter isL[Q] - L[31] (to be set with the
commands| O, ..., | 31, ortheL array ineda).

The pulse program statementsi u0- i u31 increment
the counters| 0-1 31 by 1, du0-du31 decrement
them by 1, and r u0-r u31 reset them to L[0] - L[31].

lo to label tines |0

lo to label tines |31

Theloop counter istaken from the list defined by the
acquisition parameter VCLIST. Thelist can be cre-
lo to label tines c ated withedl i st vc. The statement i vc advances
thelist pointer by 1. Thelist pointer position can aso
be set with an equation, e.g. vci dx=5.

Theloop counter must be defined at the beginning of
the pulse program by means of adef i ne statement

lo to | abel tines and an expression, e.g.
my Count er define | oopcount er nyCounter

“myCount er =ag/ 10m +1“
The result of the expression must be dimensionless.

Table3.1 Thel o statements

57

Example 3:

ze
| abel 1, (d1 p1):f1
loto labell times |2

lu iu2
p2:f2
go=l abel 1

Assume the parameter L[2] is set to 1 using the command | 2 1, or by set-
ting L[2]=1ineda. Then, (d1 pl):f 1 would be executed once before
scan 1, twice before scan 2 etc. Thel o statement does not cause an extra
delay in the sequence. Theincrement statement i u2 is executed during the
specified 1 psecond delay. You could replace the loop counter | 2 with ¢ in
thisexample, and replacei u2 withi vc to use the number of loops specified
inalistfile.

Example 4:

defi ne | oopcount er nyCounter
“myCount er =aqg/ 10m +1“
ze
| abel 1, (d1 p1):f1
lo to labell tines nyCounter
go=l abel 1

Here the variable myCounter represents aloop counter. An arithmetic
expression assigns avalue to it: the parameter AQ, divided by 10 millisec,
plus 1. The compiler truncates the quotient ag/10m to give an integer. The
expression may include any of the parameters shown in Table 1.3.

3.2 Conditional pulse program execution

3.2.1 Conditions evaluated at precompiletime

Consider the pulse program at the left part of Table 3.2. It combines two experi-
ments in one pulse program, a simple Cosy and a Cosy with presaturation during
relaxation. The required pulse program statements to select or deselect presatura-
tion are:

#defi ne aFl ag

58

#def i ne PRESAT #def i ne PRESAT
1 ze 1 ze
2 di1 2 di1
3 0.1u 3 0.1u
#i f def PRESAT #i ncl ude <Presat.incl>
dl2 pl9:f1l pl phl
dl cw f1l do
dl3 do:f1l p0 ph2
dl2 pl1:f1 go=2 ph31
#endi f dil w #0 if #0 idO zd
pl phl loto 3 times tdl
do exit
pO0 ph2
go=2 ph31
dil w #0 if #0 idO zd
loto 3 tines tdl
exit

Table 3.2 Using #def i ne, #i f def , #i ncl ude statements

#i fdef aFl ag
#i f ndef aFl ag
#endi f

and correspond to C language pre-processor syntax. Note that aFlag isjust aplace
holder, it can be any name. If the pulse program contains the statement:

#defi ne aFl ag

theidentifier aFlag is considered to be defined, otherwiseit is considered to be
undefined. If aFlag is undefined, the statement:

#i fdef aFl ag

causes the pulse program to ignore all subsequent statements until the statement:
#endi f

If aFlag is defined, these statements will be executed. The statement:
#i f ndef aFl ag

has the opposite effect.

59

3211

In Table 3.2, #def i ne PRESAT enables the presaturation statement block. Com-
menting out thislinein C-syntax style (/ *#def i ne PRESAT*/) or in pulse
program style (; #def i ne PRESAT), would make the PRESAT flag undefined,
and the presaturation block would not be executed.

The#i f def and #i f ndef statements are evaluated by a pre-processor. The pulse
program compiler will use the pre-processed pulse program. For this reason, these
statements do not cause any timing changes. You can view a pre-processed pulse
program from the pulse program display. Just enter the pul sdi sp command and
and click the button Show program. Note that in the pre-processed pul se program,
al conditional statements beginning with a’# have been removed.

The example could be extended to include double quantum filtering. For this pur-
pose, an additional flag (e.g. #def i ne DQF) could be defined.

Theright part of Table 3.2 shows the same pulse program in amore condensed
form. The presaturation block is now contained in a separate file, Presat.incl,
which isincluded with the #i ncl ude statement.

Setting of Precompiler Conditions

Conditions can be set or unset not only within the pulse program but also on the
command line with the zg command using the option - D. For example, the com-
mand zg - DDQF has the same effect asthe line:

#define DQF

at the beginning of the pulse program. The argument must follow the - D option
without any white spacesin between. As an alternative to command line optionsto
Zg, you can also set the acquisition parameter ZGOPTNS. Once this parameter is
set, the corresponding option isused by zg and go .

Please note:
All statements beginning with a’# character must start at the beginning of aline.
Spaces or tabs before '# are not allowed.

3.2.1.2 Macro Definitions

You can use the statement #def i ne not only to define aFlag, but aso, asin C lan-
guage, to define a macro.

60

Example 1:

#define macrol (pl dl) (p2):f2
macrol

This pulse program section is equivalent to:
(pl d1) (p2):f2

Example 2:
#defi ne macro2 (pl di) \n\
(p2):f2
macr o2

This pulse program section is equivalent to:
(pl di1)
(p2):f2

The definition of macro2 extends over 2 lines using the \n\ character sequence.
Inexample 1, p1 and p2 start at the same time, whilein this example p2 starts
after (p1 d1) hasfinished.

Example 3:

#define macro3 (pl d1) \n (p2):f2
macr o3
This pulse program is equivalent to:
(pl di)
(p2):f2

The definition of macro3 requires only one line. However, the \n character se-
guence enforces anew line when the macro is evaluated. As such, the pulse pro-
grams of the examples 2 and 3 are identical.

3.2.2 Conditions evaluated at compiletime

Whereas conditions controlled by #i f statements are evaluated at precompile
time, conditions controlled by i f statements are evaluated at compile time.

Thei f statement can be used in connection with the parameters L[0] - L[31] as
shown in the following example;

The condition must be followed by an if-block and, optionally, can be followed by
an else-block. The statement ‘el se i f’, asitisusedin C language, is not

61

if (17==0) if 17iszero
if (18!=0) if I8isnot zero
if (19 op(arith. expression)) op canbe==,!=,> <,>= or
<=
Table 3.3

alowed in pulse programs.

if (15> 2)
{

pl phl
}

el se

{
pl ph2

}
Table 3.4 a condition evaluated at compile time

Example: See Table 3.4

Theif-block is executed if the condition istrue at compile time; in the above
exampleif | 5 isgreater than 2, p1 is executed with phase program ph1, if not, itis
with phase program ph2. If | 5 changes during the experiment, and the condition
becomes false, the execution mode doesn‘t change.

3.2.3 Conditionsevaluated at run time

The spectrometer TCU has four trigger inputs. Trigger events can be positive or
negative edges or levels.

XWIN-NMR supports branching and evaluation of conditions within a pulse pro-
gram while the pulse program executionisin progress. Table 3.5 lists the available
statements. These statements do not cause a delay in the pulse program. At run
time, pre-evauation is performed during the cycle time of the loopsin which the
statements are embedded. If, in a particular pulse program, loops are executed too
fast, arun time message is printed.

62

got o | abel Unconditiona jumpto | abel
. . Branchto| abel if expressi on evaluates
i f expression gotol abel
totrue.
Branchtol abel ifthetri gger conditionis
true.

Positive level trigger specifiers:
trigpl1,trigpl2,trigpl3,trigpl4

Negative level trigger specifiers:
trignl1,trignl2,trignl3,trignl4

if (trigger) goto | abel

Thesamet ri gger specifiers as above are
allowed. The next pulse program statement
will not be executed until thet ri gger con-
dition becomestrue. Example:1u trigpl 1
aDel ay trigger Positive edge trigger specifiers:
trigpel,trigpe2,trigpe3,trigped

Negative edge trigger specifiers:
trignel,trigne2,trigne3,trigne4

Table 3.5 Conditional pulse program execution

Example 1.
ze
| abl, d1
pl
do

if "do*2 + 7m > 500nm' goto | ab2
"do = dO + 10nt
p2

| ab2, go=l abl

Assume that we will start with dO=10m. The pulse p2 will no longer be exe-
cuted when the expression “d0*2 + 7m > 500nf becomestrue.

Example 2:

ze
labl, if (trigpl2) goto |ab3
| ab2, di1

63

pl
aq
lo to lab2 tines ds
goto | abl
| ab3, di1
pl
go=l abl

The TCU has 4 trigger input channels; signals arriving at the TCU can be
checked using thet r i g specifiers. This example performs DS dummy
scans to maintain steady state conditions as long as no positive level is
detected on input channel 2. If such alevel is detected, NS data acquisition
scans are executed, then the pulse program again checks the external trigger

signal.
Example 3:
ze
labl, dl trigpl2
pl
go=l abl

This example starts executing the pulse sequence as soon as a positive level
is detected on input channel 2. After each scan, the pulse program will wait
until the next trigger signal is detected.

Example 4.

ze

| abl, di1
pl
loto labl tines |2
0.1u iul :count number of scans
0.1u iu2 ;increment 12
if “1'1 <= 3“ goto lab2 ;if scancounter <4
0.1u ru2 resetl2tolL?2

| ab2, go=l abl

Thisexamplerepeatsthe sequence (d1 pl) L[2] timesbeforescan 1, L2+1
times before scan 2, and L2+2 times before scan 3. Then, | 2 isreset toits
initial value L[2]. Before al remaining scans the sequence (d1 pl) isgen-
erated L[2] times. L[1] must be set to 1 before starting the sequence.

3.3 Suspend/resume pulse program execution

XWIN-NMR allows you to stop (suspend) the pulse program execution at specified
positions in the pulse program. Pulse program suspension can be done condition-
aly or unconditionally using the statements shown in Table 3.6.

suspend stop execution on the command suspend

aut osuspend stop execution

cal csuspend stop precal culation and stop execution on suspend
cal caut osuspend stop precal culation and stop execution

Table 3.6 statements to suspend pul se program execution

After suspension, the program execution can be resumed with the XWIN-NMR com-
mand r esurre.

If you use suspend or aut osuspend, you should not change any acquisition
parameters between suspending and resuming the acquisition. The reason is that
the acquisition uses the principle of precal culation which means a part of the pulse
program isinterpreted (precalculated) before it is actually executed. After resume,
the precal culated part is executed without considering the parameter change.

The statement cal csuspend or cal caut osuspend, however, stop precalcula
tion. Here you can change parameters between suspending and resuming the
acquisition. Note that you must specify a delay which islong enough to restart pre-
calculation after r esumne. For example:

cal csuspend

2s

If, after resuming the acquisition, you would get the error message "timing too
short”, you must increase this delay.

65

Chapter 4

Data acquisition and storage

4.1 Sart data acquisition

XWIN-NMR provides 5 basic pulse program statements to start data acquisition:
go=l abel , gonp=l abel , gosc, goscnp and adc.

The most commonly used statement is go=I abel . Actually, go isamacro state-
ment, i.e. it includes a number of different actions required for data acquisition.
The statement adc can be used to control fine details of the acquisition process.
All five acquisition statements place the digitized signal into amemory buffer. The
wr statement, described in alater section, writes the buffer contents to disk.

4.1.1 The statements go=label, gonp=Ilabel, gosc. goschp

The left column of Table 4.3 shows a simple example of how to use go=I abel in
apulse program. All go type statements perform the 8 actions described below. A
parallel sequence of 5 pre-scan subdelays is executed (see the description of DE1/
DE2/DERX/DEPA/DEADC in the Acquisition Reference Manual). Note that all
these delays start simultaneously, at the beginning of DE. The sequencein which
the actions are performed, depends upon the length of the individua delays.

1. Attheend of DEPA (preamplifier blanking delay), the preamplifier is switched

66

to observe mode.
. At the end of DERX (delay for receiver blanking) the receiver gate is opened.

. At the end of DEL, the intermediate frequency (if used) is added to the fre-
guency of the observe channel. This corresponds to the execution of the state-
ment syr ec. The intermediate frequency is only used for AQ_mod = DQD o,
if your spectrometers has an RX22 receiver, for any value of AQ_mod.

. At the end of DE2, the phase of the receiver channd is set to 0. Note that DE2
isused on Avance-AQX but not on Avance-AQS

. At the end of DEADC (delay for ADC blanking), the digitizer is enabled.

. After atotal delay of DE the digitizer is started. Please refer to the description
of the parameters DW/DWOV/DIGMOD on how the sampling rate is selected.
The result will be adigitized FID signal of TD data points, where the time
domain size TD is defined by the user (from eda, or by typing t d). The FID
will be put into the current memory buffer. The contents of memory buffers can
be transferred to disk with thewr pulse program statement or with thet r com-
mand. The section Acquisition memory buffers discusses the usage of memory
buffers and the size restrictions of TD.

. Atthetimethedigitizer isstarted, adelay AQ isexecuted. Thisdelay lasts until
the digitization of the FID isfinished.

. A delay of 3 millisec is executed. During this time the following tasks are per-
formed:

a) The scan counter, visible during real time FID display, isincremented to
inform the user about the number of scans performed since the last executed
ze or zd statement.

b) The frequency of the observe channel is switched back to the frequency of
the observe nucleus (if the intermediate frequency is used). This corre-
sponds to the execution of the statement syt r a (whichisinversetosyr ec).
The intermediate frequency is only used for AQ_mod = DQD or, if your
spectrometers has an RX22 receiver, for any value of AQ_maod.

¢) The pointers of all phase programs are incremented to the next phase, corre-
sponding to the execution of the statementsi pp0, ..., i pp31. Thisstepis
skipped by gonp=I abel and goscnp.

d) The statementsgo=I abel and gonp=I abel perform aloop to label,
whereas gosc and goscnp do not loop. The pulse program statements
between label and go or gonp are executed DS+NS times. During the first

67

DS loops (dummy scans to achieve steady state conditions), the digitizer is
not activated. In all other respects, the dummy scans are identical to the NS
data acquisition scans. If no dummy scans are desired, DS must be set to 0.
Please note: Even if DS > 0, no dummy scans will be executed if the pulse
program statement zd (rather than ze) was executed beforeago loopis
entered (see the description of ze and zd). Thisfeatureis, for example, used
in 2D experiments where dummy scans are only required before the first
FID is measured.

Table 4.1 shows that the go statements can be specified in conjunction with other

Receiver phase = ph31, redized via add/
subtract and channel A/B switching.
Allowed phase values. 0, 90 180, 270
degrees.

1 | go=2 ph3l

Receiver phase = ph30 + PH_ref, realized
viathe phase of the reference frequency
of the observe channel. Allowed phase
values: any.

2 | go=2 ph30:r

Combination of (1) and (2). The receiver

3 | go=2 ph3l ph30:r phase is the sum: ph31 + ph30 + PH_ref

Decoupling starts at the same time the
4 | go=2 ph31 ph30:r cpdl:f2 receiver is opened, and automatically
stops when the loop is executed.

Asexample 4, with a phase program for

0=2 ph31 ph30:r cpdl:f2 ph29
5 ¢ P P P P the CPD sequence.

Table 4.1 Examples of the usage of the go or gonp statement

statements. PH_ref is an acquisition parameter to be defined by the user.

4.1.2 The statementsrcyc=label, rcycnp=label

The statement r cyc executes step 8 of the actions performed by go=I abel and
gonp=l abel (seethe previous section). Ther cycnp statement skips step 8c.

Ther cyc statements can be used for acquisition loops based on adc rather than

68

go=Il abel or gonp=l abel . You should not specify phase programs behindr cyc
andr cycnp. Decoupling statements are allowed although it would not make sense
to use them here. Table 4.3 shows an example of an acquisition loop withr cyc.
Note that the adc statement is part of the DE1 macro statement.

Ther cyc statements can aso be specified behind adelay, e.g. 100u rcyc=2.
They are then executed during that delay instead of the default 3 millisec. Such a
delay must be at least 100 psec.

4.1.3 The statements eosc, eoscnp

The statement eosc executes steps 8a-8c of the actions performed by go=I abel
and gonp=I abel (seethe previous section). Theeoscnp statement only executes
steps 8aand 8b.

Theeosc statements can be used in pulse programs with data acquisition based
on adc. In contrast tor cyc, you must add the appropriate |oop statements.

You should not specify phase programs behind eosc and eoscnp. Decoupling
statements are allowed but it would not make much sense to use them here. Table
4.3 shows an example of an acquisition loop based on eosc. Note that the adc
statement is part of the DE1 macro statement.

The statement eosc or eoscnp can also be specified behind adelay of at least 100
psec, e.g.:

100u eosc

In that case, they are then executed during the specified delay rather than during
the default 3 millisec.

4.1.4 The statementsze and zd

The statements ze and zd perform the following actions:

1. They set the scan counter, which isvisible during real time FID display, to 0 or
to -DS. A negative vaue indicates that dummy scans are in progress.

2. They set aflag which triggers the next go, gonp, gosc, goscnp, or adc state-
ment to replace any existing data in the acquisition memory rather than add to
them. This counts for all NBL memory buffers. If ze or zd are placed outside
an acquisition loop, the replace mode will only be valid for the first scan per-
formed by the loop. The FID’s of all the scans that follow will be added to the

69

data present in the memory buffer.

3. The statement zd automatically resets all phase program pointers to the first
element, whereas the statement ze sets al phase program pointers such that
they are at the first element after DS dummy scans.

4. The difference between ze and zd isthat zd prevents the execution of dummy
scans by go, gonp, gosc, goscnp, and by adc (combined withr cyc or
eosc), evenif DS > 0.

The statements ze and zd can be written behind a delay statement. Such adelay
must be at least 10 psec and its minimum length depends on the number of phase
programs. They are then executed during the delay. If they are not specified with a
delay their execution will require 3 millisec.

The statement zd is normally executed as a part of the nc macro statement. As
such it does not appear in most Bruker pulse programs. One example whereit is
specified explicitly is the pulse program selno.

4.1.5 The statement adc

The statement adc starts the digitizer and, at the same time, opens the receiver.
Please refer to the description of the parameters DW/DWOV/DIGMOD in the
Acquisition Reference Manual for information on how the sampling rate is calcu-
lated. Theresult of adc will be adigitized FID signal of TD datapoints. TD isan
acquisition parameter that must be set by the user. The FID will be placed in the
current memory buffer (see the section Acquisition memory buffers).

When you use the adc statement rather than go, you must consider the following:

* Whereasthe go statement automatically executes the required switching
delays, these must be specified explicitly when you use adc. For this pur-
pose, the macros DE1, DE2, DE3, DEPA, DERX and DEAC are available.
They are defined in the file De.incl that can be included in the pulse pro-
gram with the statement:

#i ncl ude <De.incl>
The contents of thisfileis shown in Table 4.2.
Note that adc isimplicitly defined with DE1

Here, the statement de executes the delay defined by the acquisition param-
eter DE. The statementsdel, de2, der x, deadc and depa execute a delay

70

rdel
rde2
rdepa
rderx
rdeadc

define
define
define
define
define

del ay
del ay
del ay
del ay
del ay

"rdel=de-del;"
"rde2=de-de2; "
"rdepa=de- depa; "
"rderx=de-derx;"
"r deadc=de- deadc; "

#defi ne
#def i ne
#def i ne
#defi ne
#def i ne
#def i ne

DE3 (de)

DE1 (del rdel adc ph3l syrec)
DE2 (de2 rde2 ph30:r):f1l

DEPA (depa rdepa RGP_PA ON)
DERX (derx rderx RGP_RX _ON)
DEADC (deadc rdeadc RGP_ADC _ON)

Table 4.2 The contents of thefile De. i ncl

that is defined by the corresponding edscon parameters.

» For end-of-scan handling, you must specify one of the statementseosc,
eoscnp, rcyc, or rcycnp. Multiple adc statements can be used in con-
junction with, for example, asingle eosc statement. Table 4.3 showsthe

ze
2 d1
(pl phl):f1

#i ncl ude De. i ncl
ze
2 di1
(pl phl):f1
DE1 DE2 DEPA DERX DEADC DE3
aq DVELL_GEN
rcyc=2

#i ncl ude De. i ncl
ze
2 d1
(pl phl):f1
DE1 DE2 DEPA DERX DEADC DE3
aq DWELL_GEN
eosc
loto 2 tinmes ns

Table 4.3 The same pulse program based on go, adc/r cyc, and adc/eosc

71

same pulse program realized viago=I abel , adc in conjunction withr cyc,
and adc in conjunction with eosc.

* You must enable the intermediate frequency using the statement syr ec.
This, however, is only necessary for AQ_mod = DQD or, if your spectrome-
ters has an RX22 receiver, for any value of AQ_maod.

» Thedwell timeisgenerated during aq. For Avance-AQX, theadc statement
starts dwell generation on the RCU (here the macro DWELL_GEN has no
effect). For Avance-AQS, the dwell timeis generated on the SGU with the
macro DWELL_GEN.

For an example of how to use the adc statement rather than go, pleaselook at the
Bruker pulse program zgadc (enter edpul zgadc). This program will produce
exactly the same result as the program zg.

The statement adc will send acommand to start the digitizer. The digitization
doesn’t start immediately with this statement but only after a delay DE-DELI. In
this way the sampling starts exactly with the beginning of ag.

Table 4.4 shows how homodecoupling for Avance-AQX during data acquisition
can be realized using adc. Homodecoupling requires the receiver to be turned off
at regular intervals. This can be achieved with the option :e, appended to apulse or
delay statement. It disables the receiver for the duration of the respective pulse or
delay. Notethat if :e does not occur between the statements adc (or DE1) and
rcycl/eosc, but at adifferent position, its effect isreversed, i.e. the receiver isena
bled rather than disabled.

Thereceiver phase

In pulse programs using the adc statement, the receiver phase must be specified
behind adc, e.g..

adc ph31

This statement sends an interrupt signal to the RCU, telling it to account for the
receiver phase setting. Note that there must be sufficient time between the end-of-
scan interrupt signal of one scan and the receiver phase interrupt signal of the next
scan. Normally, the recycle delay is long enough for this purpose. However, for
some applications (like imaging experiments) the recycle delay can be too short
for correct interrupt handling. In that case, the receiver phase should be specified
before the scan loop using the statement r ecph ph31 (see Table 4.5). The state-
ment i p31 after the recycle loop increments all entries of the phase program ph31

72

#i ncl ude De. i ncl

define delay dwl

define delay dw2

define pul se pw3

define delay dw4

define delay dwbs

define | oopcounter tdov
"dwl=0. 1u"

" dw2=2u"

"dw4=2. 5u"
"pw3=2*dwov/ 5" ; 20% dwel
" dws=2* dwov- dwl- dw2- pw3- dw4"
"tdov = td *decim/ 2"

1 ze
2 (d1 pl ph31)
DE1 DE2 DEPA DERX DEADC DE3
10 dwl
dw2: e
pw3: f2: e
dw4: e
dws
lo to 10 tines tdov
50u
rcyc = 2
wr #0
exit

ph30=0
ph31=0 2 2 01 3 3 1

Table 4.4 Homodecoupling during data acquisition

but does not set the phase. As such, the receiver phase is not changed after each
scan but after NS scans.

4.1.6 External dwell pulses

The go and adc statementsinstruct the digitizer to acquire the desired number of
data points with a rate given by the dwell time. The dwell pulses, which activate

73

1...

2 dl 2u recph ph31
10u adc ph31l dl
aq 10u adc
rcyc=2 aqg
10u ip31 d2 rcyc=2
loto 1 tinmes |1 10u ip31

lotoltimes |1

Table 4.5 Receiver phase setting without and with r ecph

the digitizer in regular time intervals are generated internally (on the RCU) so that
the detection of acomplete FID is automatically accomplished onceinitiaized via
go or adc. Thisoccurs during the delay aq as displayed in the middle and theright
columns of Table 4.3.

Certain experiments, however, require the control of the detection of each individ-
ual datapoint of an FID. On Avance-AQX, you can do that with the external dwell
that is generated with the :x option. The pulse program in Table 4.6 displays an
example of how this can be achieved. It works like the middle pulse program in
Table 4.3, except that the dwell pulses are generated externally (i.e. by the TCU)
by using the :x pulse option. A corresponding cable connection between TCU and
RCU isrequired. In this pul se program the waiting time aq has been replaced by a
loop that generates as many dwell pulses as required to measure TD data points.

Please refer to the Bruker pulse program libraries for high resolution, solids, and
imaging experiments for examples using the :x option.

On Avance-AQS, the external dwell time is generated on the SGU, using the state-
ment:

aq cpdngs29:f1

4.2 Acquisition memory buffers

The acquisition statements go=I abel , gonp=I abel , and adc put the acquired
data pointsinto amemory buffer where they reside until new data points are added,
or until they are replaced by new data (replace mode isturned on by the statements

74

define delay dx
define pul se px
“dx=dwov/ 2"
“px=dwov/ 2"

ze
2 d1

(pl phl):f1

DE1 DE2 DE3 DEPA DERX DEADC
3 dx

pX:X ;externa dwell pulse

loto 3 tinmes tdov

rcyc=2

Table 4.6 Acquisition on Avance-AQX, based on external dwell pulses

ze and zd). A memory buffer provides space for TD data points, where TD must
be set by the user.

In most 1D experiments, one FID is measured and stored in one memory buffer.
After NS scan have been accumulated, the contents of that memory is written to
disk (with thewr statement). Multi-dimensional experiments, imaging experi-
ments, experiments varying parameters such as the decoupling frequency or recov-
ery time generate severa FID’s. In that case you can use one or severa memory
buffers. If asingle buffer is used, the buffer contents must be transferred to disk
before the next FID can be measured. If several buffers are used, several FID’s can
be measured before adisk transfer isrequired. The latter method is appropriate if
the FID’s of the experiment succeed one another so quickly that no disk transfer is
possible in between them.

The acquisition parameter NBL determines the number of memory buffers used
(default: NBL=1). Each buffer hasasize TD. If TD is not a multiple of 256, the
buffer size will be rounded to the next multiple of 256 datapoints. The acquisition
commands will put the FID into the current buffer. The default current buffer is
buffer 1. The pulse program statement st makes the next buffer the current buffer
whereas the statement st 0 makes the first buffer the current buffer. When the

75

number of buffersis exhausted, i.e. when st isexecuted for the NBL'th time, the
first buffer becomes the current buffer.

The statements st and st 0 must be specified behind a delay which must be at
least 10 usec, e.g.:

10u st

Table 4.6 shows an example, the Bruker pulse program noedif. The FID’s acquired

1 ze
dll pl14:f2
dll fg2:f2 stO
2 di
3 d20 cw. f2
d1l3 do:f2
pl phl
go=2 ph31
dl fg2:f2 st
loto 3 tinmes |14
dll wr #0 if #0O
exit

Table 4.7 Usage of st and st 0: noedif pulse program

with different decoupling frequencies are stored in two memory buffers.

The size of NBL islimited by the constraint that NBL times TD must not exceed
the available RCU memory. For example, an RCU equipped with 4 Mb DRAM
alowsfor about 3.8 Mb FID datato be stored (the remainder is needed by the
acquisition parameters). If necessary, you can upgrade your spectrometer with
more RCU DRAM.

4.3 Writing data to disk

Data acquisition statements go=I abel , gonp=I abel , gosc, goscnp, and adc
put the digitized data into a memory buffer, but do not store them to disk. There-
fore, every pulse program must contain at |east one disk write statement to transfer
the acquired datato disk. Table 4.8 shows the avail able pulse program statements

76

#0

Macro statement that executes the statementswr #0,
i f and zd. Normally nt is specified with one or
more clauses which expand to loop structures.

#0

Transfer the acquisition buffer to the file fid, or
transfer NBL acquisition buffersto the file ser of the
current data set. For ser files: wr starts writing into
thefile at the current position of the disk file pointer,
which initially is at the beginning of thefile.

#1L,wr #2,wr #3, ...

Transfer is performed to thefile fid or ser of the data
set with the number 1, 2, 3, ... contained in the data
set list defined by the acquisition parameter DSLIST.

##

Transfer is performed to the file fid or ser of the data
set which is pointed to by the data set list pointer. Its
initial position is#0 which always correspondsto the
foreground dataset. The list pointer can be incre-
mented by 1, decremented by 1, or reset to the first
item of the list using the statementsi f p, df p, and

r f p, respectively.

#O,if #1,if #2,..

Advance the disk file pointer for ser files by
TD*NBL (notethat TD is rounded to the next multi-
ple of 256 data pointsif it is not a multiple of 256).

df

#0,df #1,df #2,..

Decrement the file pointer (inverse of i).

rf

#0O,rf #1,rf #2,..

Reset the file pointer to the beginning of the ser file.

rf
rf

#0 mrf #1 m
#2 m ...

Set thefile pointer to position m* TD*NBL of the ser
file, where m is an integer number.

Table 4.8 Writing acquisition buffersto disk

to access disk files.

Transferring datato disk means adding the data to the data contained in an existing
fid or ser file, or replacing these data.If no such file exists, it will be created.
Replacement will take place if started with zg, addition will take placeif the pulse
program is started with the command go. However, data replacement only occurs
the first time amemory buffer istransferred to disk. Any further execution of the
nmc or wr statement will cause the buffered data to be added to the datain the file.

77

Itis allowed to specify the statementsi f, zd, i dO-i d31,i pO-i p31, and decou-
pling statements behind the same delay that is used for wr . It isimportant to use
either azd or ze statement after each wr before the next scan. Otherwise the data
will be added to data previously acquired in the same memory region.

The name of the output file isfid or ser. An fid file contains asingle FID, whereas
aser file contains a series of FID’s. The appropriate name is automatically chosen
by the pulse program compiler: if a pulse program contains one of the increment,
decrement, or reset file pointer statements, or st /st 0, aser filewill be created.

If the pulse program uses a sex file, the acquisition command checks if a ser file
aready existsand if it hasthe correct size. If thisisthe case, the first occurrence of
aw statement will overwrite the ser file section defined by the current file pointer,
TD, and NBL. If aser file does not exist or has the wrong size, a new ser file will
be created filled it with zeroes before acquisition starts. As such, the ser fileis not
required to grow during the experiment. This method avoids the risk of running out
of disk space while acquisition isin progress.

Ina2D experiment, the TD value must be set such that (F2-TD)* (F1-TD)*4 corre-
spondsto the size (in bytes) of the ser file. In a 3D experiment, the TD values must
be set such that (F3-TD)* (F2-TD)* (F1-TD)* 4 correspondsto the size (in bytes) of
the ser file. If they are not, awarning is displayed even though the experiment can
still be executed. If, for some reason you have performed a 2D experiment with an
F1-TD valuesthat does not match the size of the ser file, you must set the status
F1-TD value before you process the data. You can do that with 1s t d. For a 3D
experiments you can adjust the TD values of the indirect dimension with2s t d
and1lstd.

Although XwIN-NMR does not offer a 4D dataset structure, you can run a4D
experiment by executing a pulse program with a4D loop structure. If you do that
on a 2D dataset, the TD values must be set such that (F2-TD)* (F1-TD)*4 corre-
sponds to the size (in bytes) of the ser file. This means F1-TD must be product of
the number of incrementsin the three indirect dimensions. If you do that on a 3D
dataset, the TD values must be set such that (F3-TD)* (F2-TD)* (F1-TD)*4 corre-
spondsto the size (in bytes) of the ser file. Similarly, you can run experiments of
more than 4 dimensions.

In 3D pulse programs, the acquisition status parameter AQSEQ describes the order
(321 or 312) in which the 1D FID’s of a 3D acquisition are written into the ser file
(3 = the acquisition dimension, 1 and 2 = the orthogonal dimensions). AQSEQ is

78

automatically set and stored in the parameter file acqus according to the pulse pro-
gram loop structure. A 3D pulse program usually contains a double nested loop
with loop counterst d1 andt d2. If t d1 isused in theinner loop andt d2 in the
outer loop, AQSEQ is set to 312. Otherwise it is set to 321. Note that in most 3D
pulse programs, thet d1 and t d2 loop isimplicitly defined by an nt statement. If
a 3D pulse program contains a different loop structure (not defined by t d1/t 2d or
nmc) AQSEQ should be explicitly set with one of the statement:

agseq 321
agseq 312

before the actual pulse sequence. Without this statement, the status parameter
AQSEQ would be set to an arbitrary value. In that case you can still set it after the
acquisition has finished (before processing) is with the command 3s agseq .

Thewr statements (and all other statementsin Table 4.8) can be specified behind a
delay (see the example in Table 4.7). The delay must be at least 10 psec. The only
timing requirement for wr isthat the disk transfer is finished beforewr is called
again. If it isnot, arun-time error message is printed. The actual execution time of
a disk write depends on the computer hardware, the operating system, and the sys-
tem load according to currently active processes and users. Bruker recommends to
acquire dataonly to adisk that is physically connected to the computer that con-
trols the spectrometer.

79

Chapter 5

The mc macro statement

5.1 Themc macro statement in 2D

A 1D experiment can be based on the following pulse program sequence:

1 ze ;initialisation
2 d1 ;dtarting delay
pl ;pulsing
do ; waiting
go=1 ; acquiring FID and loop for adding
dl wr #0; write to buffer

You can turn this sequence into a 2D sequence by taking the following steps:

increment the file pointer after each disk write
initialize the buffer after each disk write
increment a delay, by convention do0, in each loop

add aloop outside of thewr #0 statement to a second label - the size of
which isusually t d1

for phase sensitive acquisition: add a phase increment

When the indirect dimension is acquired phase insensitive, the 2D pulse program
would have the following form:

80

1 ze

2 di

3 pl

do

go=2

di w #0 if #0 zd idO
loto 3 tines tdl

In XWIN-NMR 3.0 and newer, the last two lines can be can be replaced by the nt
statement. In the above sequence, this would take the form:

dl nc #0 to 2 F1QF(i dO)

The statement nt isamacro that includes adisk write (wr), afileincrement (i f)
and memory initialization (zd). It can be used with one or more clauses, e.g. F1QF,
which expandsto aloop structure. Each clause can take one or more pulse program
statements, e.g. i d0, as arguments. These statements are executed within the loop
created by the clause. Different mc clauses are used for phase sensitive, phase
insensitive and echo-antiecho experiments. However, the same nt clause, i.e. the
same pulse program, can be used for different types of phases sensitive experi-
ments like QSEQ, States, TPPI and States-TPPI. The experiment typeis deter-
mined by the F1 acquisition parameter FnNMODE. The allowed combinations of
FNMODE and nt clauses arelisted in Table 5.1.

nt clause Mode Possible values of F1I-FnMODE
F1QF phase insensitive QF
F1PH phase sensitive QSEQ, States, TPPI, States-TPPI
F1EA Echo-Antiecho Echo-Antiecho

Table5.1

If an incorrect combination of FNMODE and nt clause is used, such as F1PH - QF,
the zg command will show an error message and quit.

2D and 3D processing commands interpret the acquisition status parameter
FnMODE and set the processing status parameter MC2 accordingly. However, if
FNMODE = undefined, they interpret the processing parameter MC2 and set the
processing status parameter MC2 accordingly.

81

By using nt instead of thewr andl ot o | abel statementsfewer 2D (and 3D)
pulse programs are needed. For example, in XWIN-NMR 2.6 and older, the pulse
programs cosytp, cosyst and cosysh were used for TPPI, States- TPPI and States,
respectively. In XwiN-NMR 3.0 and later, a single pulse program, cosyph, can be
used for all phase sensitive modes. We will 1ook at the expanded forms of cosyph
for different values of F1-FnMODE. The unexpanded pulse program as it appears
with edpul cosyph:

" d0=3u"

1 ze
2 di
3 pl phl
do
p0 ph2
go=2 ph31
dl nc #0 to 2 F1PH(ipl, id0O)
exit

ph1=0 2 2 0133 1
ph2=0 2 021313
ph31=0 2 2 013 3 1

0 3
2 1

The expanded pulse programs will have the following header which isthe samefor
the different values of F1-FNMODE:

define del ay MOWRK
define del ay MCREST
"MCREST = d1 - d1"

As such, it is not specified in the expanded pulse programs below. Note that
MCWRK, MCREST are general delaysthat are defined during the expansion of
the nt statement. MCREST is zero for al expansions of cosyph but can be non-
zero for other pulse programs. MCWRK, however, is different for different expan-
sions. Notethat the phase programs are, for each value of FNMODE, the same asin
the unexpanded pulse program.

F1-FnM ODE = QSEQ:
define | oopcounter ST1CNT
"STICNT =td1/ (2) "
"MCWRK = 0.500000 * d1"
1 ze

"inO =in0/ 2"
2 MCWRK
LBLSTS1, MCWRK
LBLF1, MCREST
3 pl phil
do
p0 ph2
go=2 ph31
MOWRK wr #0 if #0 zd ipl idO
lo to LBLSTS1 tinmes 2
MOWRK rpl
lo to LBLF1 tinmes ST1CNT
exit

F1-FnM ODE = States

define | oopcounter ST1CNT
"STICNT = tdl / (2)
" MCVWRK 0. 500000 * d1"
1 ze
2 MCWRK
LBLSTSL1, MCWRK
LBLF1, MCREST
3 pl phl
do
p0 ph2
go=2 ph31
MOWRK wr #0 if #0 zd ipl
lo to LBLSTS1 tinmes 2
MOWRK rpl idO
lo to LBLF1 tinmes ST1CNT

exit
F1-FnMODE = TPPI
"MOWRK = d1"
1 ze
"inO =in0 / 2"
2 MCWRK
LBLF1, MCREST
3 pl phil
do

p0 ph2

83

go=2 ph31

MOWRK wr #0 if #0 zd i pl idO
lo to LBLF1 tinmes tdl

exit

F1-FNnM ODE = States-TPPI

define | oopcounter ST1CNT
"STICNT =tdl / (2)
"MOWRK = 0.500000 * d1"
1 ze
2 MCWRK
LBLSTSL1, MCOWRK
LBLF1, MCREST
3 pl phl
do
p0 ph2
go=2 ph31
MOWRK wr #0 if #0 zd ipl
lo to LBLSTS1 tinmes 2

MCVWRK i dO
lo to LBLF1 tines ST1CNT
exit

The expanded version of the pulse program can be found in the expno directory of
the dataset. Note that the nt statement performs the following actions:

In QSEQ, States, States-TPPI and Echo-Antiecho mode, nt creates two
loops and sets the corresponding labels and delays. The delay at the lineto
which nt loops back to is split into two equal parts: one for the inner loop
label and one for the outer loop label.

For F1-FnMODE = QSEQ or TPPI, the value for the delay increment is
divided by 2 during run time. The parameter NDO, which represents the
number of occurrences d0 within the loop, must have same value for al val-
ues of FNMODE.

For F1-FnMODE = QSEQ or Sates, anr p1 statement isincluded within the
outer loop. This causes the phases of ph1 to bereset to their original values.
For F1-FnM ODE= Sates, Sates- TPPI and Echo-Antiecho, the statements

specified in thefirst argument of the nt clause are executed in the inner loop

and the statements specified in the second argument are executed in the
outer loop.

84

» For FNIMODE = QSEQ), the statements specified in the first and second argu-
ment of the nt clause are executed in the inner loop.

» For FnNMODE = TPPI, only one loop is created so the statements specified
in the first and second argument of the nt clause are executed in that loop.

* For FnNMODE = QF, the nt clause contains only one argument whose state-
ments are executed in the only loop that is created.

For large 2D data sets, it is often useful to test the experiment with thefirst incre-
ment. This can be done by setting the parameter F1-TD to 1. The dimension of the
generated dataset will be 1D and can be processed as such. Note that you do not
have to change the value of the parameter PARMODE; it is till set to 2D. In the
same way, you can acquire adlice (row) of a 3D dataset by setting F1-TD (F1-TD
and F2-TD) to 1.

5.2 Themc macro statement in 3D

Thent statement can also be used in 3D pulse programs. In this case, there are two
indirect dimensions, F1 and F2. For the F1 dimension, nt uses the clauses F1PH,
F1EA and F1QF, for the F2 dimension, it uses the clauses F2PH, F2EA and F2QF.

The F2PH clause creates a second loop within which a second delay is varied.

The pulse program noesyi4pr 3d:
agseq 312

1 dil ze
2 d11 do:f2
3 d12 pl9:f1 pl2:f2

go=2 ph31 cpd2:f2
dl1l do:f2 nc #0 to 2
F1PH(i p1 & ip29, id0)
F2PH(rd0 & i p5, id10)
exit

with

F2-FNMODE = States-TPPI
F1-FnNMODE = States-TPPI:

85

expandsto:
agseq 312

define del ay MCOWRK

define del ay MCREST
define | oopcounter ST2CNT
"ST2CNT =td2 / (2)
define | oopcounter ST1CNT

"STICNT =tdl / (2)
"MCOWRK = 0.166667 * dil"
"MCREST = di11 - di11"
1 dll ze
2 MCWRK* 2 do: f2
LBLSTS2, MCWRK
LBLF2, MCWRK* 2
LBLSTS1, MCWRK
LBLF1, MCREST

3 dil2 pl9:f1 pl2:f2

go=2 ph31 cpd2:f2

MOWRK do:f2 w #0 if #0 zd ipl MOWRK ip29
lo to LBLSTS2 times 2

MOWRK i dO

lo to LBLF2 times STICNT

MOWRK rd0 MOWRK i p5

lo to LBLSTS1 times 2

MOWRK i d10
lo to LBLF1 tines ST2CNT
exit

If you reverse the acquisition order of this pulse program, i.e. if you specify:
agseq 321
you have to change the mc clauses to:

FIPH(rd10& i p1 & i p29, id0)
F2PH(i p5, id10)

5.3 Additional mc clauses

Apart from the nt clauses specified above two further clauses are available:

86

« Fll
this clauseistypically used for interleaved experiments where parameters
have to be varied independently from thei p/i d scheme required for the
actual 2D.

e FO
this clause is used when a parameter needs to be varied without increment-
ing the data file pointer.

Both F1I and FO expand to an additional inner loops.

As an example of the F1I clause, we will take the pul se program noesygpphprxf;
with F1-FnMODE = States-TPPI:

1 ze

dll pl12:f2
2 d11 do:f2
3 di12 pl9:f1

go=2 ph31 cpd2:f2

dll do:f2 nt #0 to 2
F1I (i p3*2, 2, ipl3*2, 2)
FIPH(ip4 & ip5 & ip29, id0)

exit

will expand to

"STICNT =tdl / (2 * 2 * 2)
"MCOWRK = 0.166667 * dil"
"MCREST = di11 - di11"

1 ze

dil pl12:f2

2 MCOWRK do: f2
LBLF1I 1, MCWRK
LBLF1l 2, MCWRK* 3
LBLSTS1, MCWRK

LBLF1, MCREST

3 di2 pl9:f1

go=2 ph31 cpd2:f2

MOWRK do: f2 w #0 if #0 zd ip3*2
lo to LBLF1I1 tines 2

MOWRK i p13*2

lo to LBLF112 tines 2

87

MOWRK i p4 MOWRK i p5 MOWRK i p29
lo to LBLSTS1 tinmes 2

MOWRK i dO
lo to LBLF1 tines ST1CNT
exit

The pulse program line below shows how the FO clause can be used:
dl nc #0 to 1 FO(id9) F1QF(ido)

will be expanded to:

d1*0.5 id9
loto 2 tinmes tdO
d1*0.5 w #0 if #0 zd idO

As loop counter, the parameter TDO is evaluated.

In order to be able to switch dimensions, timing of statements within the loops
must be controlled by the mc statement. So delays or pul ses should not be used as
argument to the FO, F1PH ... clauses of the nt statement. But in some cases state-
ments must be separated by an delay. Precautions have been taken for this case: the
& symbol used within an argument of FO,... will be substituted by an equal fraction
of the delay with which the mc statement was specified, e.g

dl nc #0 to 1 FO(ipl & ip3)

will expand to
MOWRK i p1 MOWRK i p3
loto 3 times tdO

For 3D pulse programs, the clauses F11 and F2I are available for the two indirect
dimensions.

88

5.4 General syntax of mc

The syntax for the nc statement is

| abel <del ayl> <options>

<del ay2> <options> nt #<buffer> to <l abel >
FO(<st at enrent s>)
F1l (<st s>, <no. of | oops>, <st s>, <no. of | oops>, ...)
F1PH(<st at ement s>, <st at ermrent s>)
F1QF(<st at emrent s>)
F1EA(<st at enment s>, <st at enmrent s>)
F2I (<st s>, <no. of | oops>, <st s>, <no. of | oops>, ...)
F2PH(<st at enment s>, <st at enrent s>)
F2QF(<st at emrent s>)
F2EA(<st at enment s>, <st at enrent s>)

The following rules hold:

<l abel > must be followed by one delay and can be followed by options
<del ay1> must be greater than or equal to <del ay2>

multiple clauses like FO(), F1PH(),.. can be specified on the same line or on
consecutive lines. Do not specify any other statements between the clauses.

The order in which FO(), F1PH(),... clauses occur is irrelevant
In 3D, the statement agseq 312 determines the order of the F1 and F2 loop
The pulse program must contain aze statement after the parameter definitions.

The symbol & is required between multiple statements of the same type (e.g.
multiple phase increments) that are specified within one argument. After
expansion, each statement will appear with a separate delay (see the examplein
section 5.3). Multiple statements of a different type (e.g. a phase increment and
a delay increment) can be specified with a & symbol or with a white space in
between. In the latter case, after expansion, they will appear together behind
one delay.

Table 5.2 shows, which expansions will be done for different values of FnNMODE.

Note the following things when you view the expanded pulseprogram:

89

create a delay- delay inc
double increment phaseinc ininner
FnPMODE | loop div. by 2 phasereset | inserted loop
QF Vv
QSEQ v v Vv Vv Vv
TPPI v Vv Vv
States v Vv Vv
States-
TPPI v v
EA v Vv

Table 5.2 Results of use of different FnMODEs

of arguments of the nt clauses

MCREST isthe difference between <del ay1> and <del ay2>
the generated labels have names like LBLF*. Please do not use labels with

these names in your own user-defined pulse programs.

MCWRK isafraction of <del ay2> and is calculated according to the number

aline starting with # is a comment to the statement(s) that follow it. The com-

ment contains the respective line number in the original pulse program, and, if
applicable, the expansions that were made.

90

91

Chapter 6

Miscellaneous

6.1

Multiplereceivers

If your spectrometer is equipped with multiple receivers, you can specify in the
pulse program with which receiver you want to acquire the data. The receiver
number (1-8) can be appended to the following statements:

go, gonp, gosc,goscnp,adc,rcyc,rcycnp,eosc,eoscnp,ze, zd,st,st0,
aqg, dw, dwov, recph,wr, i f

For example the statement:
go5=l abel

acquires the data with receiver 5
If no number is specified, 1 isassumed, i.e. go is equivalent to gol):

Parameters for the first RCU are taken from the current dataset. Parameters for the
nt" RCU are taken from data set n-1 of the data set list DSLIST.

The following parameters are taken from the dataset in the DSLIST dataset:

AQ_mod, DECIM, DIGMOD, DIGTYP, DR, DSPFIRM, DSPFV'S, FTLPGN,
NBL, OVERFLW, SEOUT, SFO1, SW, SW_h, TD.

92

All other parameters are taken from the current dataset.

6.2 Real time outputs

The spectrometer TCU provides a number of real time outputs which are used to
control various spectrometer components, such as gating and blanking the trans-
mitters. Please refer to your hardware documentation to find out which output is
connected to a particular device. The pulse program compiler will select the cor-
rect output automatically, e.g. for a statement like p1:f 2.

The file $xwiNNMRHOME/exp/stan/nmr/lists/pp/Avance.incl contains a number of
macro definitions based on the outputs, which can be used in pulse programs. This
file can be viewed with the command edpul Avance. i ncl .

The hardware documentation will also inform you which of the outputs are free for
special purposes, e.g. for controlling alaser from a pulse program.

6.2.1 Type 1l outputs(“RCP’s")

On Avance-AQX, there are 35 outputs called RCPO, ... , RCP34. They can be set
with an accuracy of 12.5 nanosec and a minimum of 50 nsec. They can be enabled
or disabled from the pulse program in two different ways . Thisisillustrated by the
examples below.

1. The statements:

pl:cO
S5u: c25
vp: cl5

generate pulses of duration P[1], 5 psec, and the current value from the pul se list
on the output channels 0, 25, and 15, respectively.
2. The statement:
lu setnmr0 | 15

activates output channel 15 (using active=low logic). The channel remains ac-
tive until it isexplicitly deactivated, e.g. with the statement:

lu setnnmr0 ~ 15

Thecharacters“[* (vertical bar) and “~* (circumflex) can be used to set and clear
abitin aregister consisting of 35 bits. As such, several outputs can be enabled

93

6.2.2

6.3

or disabled simultaneously. For example, the statement:
lu setnmm0O | 14 | 13 ~ 15

enables the output channels 14 and 13, and disable channel 15.

The statement set nnr 0 must be specified behind a delay (in the above exam-
plesitis 1 psec). The minimum delay is 200 nanosec.

The following pulse program section sets and clears a4 microsecond pulse on
RCPT7:

4u setnnr0 | 7
lu setnnr0 ™ 7

Type 2 outputs (“NMR control words")

These are 128 outputs which can be set with an accuracy of 25 nanosec and amin-
imum of 50 nsec. They are organized in 8 registers of 16 bit size (called NMR con-
trol words, outputs or registers).

The statementsset nnr 1, ..., set nnr 8 can be used to enable or disable the chan-
nels 0-15 of each register. The syntax isidentical to set nnr 0 as described in the
previous section. For example, the statement:

lu setnmr3 | 0| 13 ~ 15

enables the output channels 0 and 13 and disables output channel 15 of register 3.

Gradients

The term gradient refers to a magnetic field gradient that is added to the homoge-
neous field of the spectrometer magnet. A gradient is supplied by a gradient cail
and can be applied in the X, y and/or z spacial dimension. If agradient isapplied in
the x-dimension, the magnetic field will be constant within ay-z plane. In the y-z
plane through the center of the receiver cail, the x-gradient field is zero. Inay-z
plane at one edge of the receiver coil the x-gradient field is +M, whereasin ay-z
plane at the opposite edgeitis-M. Here, M is the maximum gradient strength
which depends on the gradient amplifier. For y and z-gradients, the same principle
holds concerning the x-z plane and x-y plane, respectively.

A rectangular gradient has a constant strength during the time it is applied,
whereas a shaped gradient has a variable strength.

94

6.3.1 Rectangular gradients

A rectangular gradient has a strength that is constant during its execution. It can be
created with one of the statements gr on0, gr oni, ..., gr on31. The statement
gr onO creates a gradient whose strength is determined by the parameters GPXO0,
GPY0 and GPZO0. Similarly, gr on1 creates a gradient whose strength is deter-
mined by the parameters GPX1, GPY 1 and GPZ1etc. The gr of f statement
switches off all gradientsthat were switched on by agr on* statement.
For example, the pulse program section:

300u gron2

Im
100u groff

switches on a gradient defined by GPX2, GPY 2 and GPZ2, at the beginning of a
300 psec delay. This gradient remains on during a period of 1.3 msec.

The parameters GPX0, GPY 0 and GPZ0 can be set by entering gpx0, gpy0,
gpz0, respectively, on the command line. Asthe gradient strength is expressed as
a percentage of the maximum strength, it takes a values between 0 and 100. The
parameter, GPX 1, GPY 1, GPX2 etc. can be set from the command linein asimilar
way. Alternatively, you can set all gradient parameters from the eda window by
clicking the GPO31 edit button.

6.3.2 Shaped gradients

A shaped gradient has a strength that varies during its execution. The gradient
strength as a function of time is called the gradient shape. It is defined by alist of
values between -1.0 and 1.0. The number of valuesin thelist defines the number of
timeintervals. Each element in the list defines the relative gradient strength during
aparticular timeinterval. Theinterval length is defined by the length of the entire
gradient shape divided by the number of intervals. The length of the shape (dura-
tion) must be specified in the pulse program The gradients are reset to zero at the
end of the shape, if no gradient statement isimmediately following.

The following 3 exampl es generate shaped gradients:
10np:gp2
pl: gpl
gr adPul se*3. 33: gp3
vp: gp4 ; Incorrect! Shaped gradients with vp are not supported.

95

They are applied for 10 millisec, P[1], and gradPulse* 3.33 and are described by
the gradient parameter table entries 2, 1, and 3, respectively. This table can be
opened by clicking on the GP031 button in eda. It has 32 entries with indices O-
31. The statements :gp0 interpretsentry 0, :gp1 interprets entry 1, etc.

Each entry of the gradient parameter table has 4 assigned parameters. GPX, GPY,
GPZ (the gradient strength multipliers for the 3 spatial dimensions), and afile
name (of the file that contains the gradient strength values).

GPX, GPY, GPZ

These are multipliers with values between 0 to 100. They are applied to the gradi-
ent strength values (which range from -1.0 to 1.0) in the shape file to obtain the
total gradient field strength.

File name

File name is the name of agradient file. A gradient file can be generated from
Shape Tool window (command st di sp) or from the command line with the com-
mand st (for moreinformation click Help — Online Manual from the Shape Tool
window).

Gradient shape files are stored in JCAMP-DX format in the directory:
SXWINNMRHOME/exp/stan/nmr/lists/gp/

Notethat if you specify an internal gradient shape, you don’t need a shapefile,
however you should define the length of the shape as described bel ow.

All gradient parameters can be set from from the eda window by clicking the
GPO031 edit button. Alternatively, they can can be set by entering gpx0, gpy0,
gpz0, gpnanD, gpx1 etc. on the command line. Asthe gradient strength is
expressed as a percentage of the maximum strength, it takes a values between 0
and 100.

As described in the next section, you can also define gradient shape functionsin
the pulse program rather than using shaped gradient files.

6.3.3 Gradient Functions

You can use gradient shapes as gradient functions. Then the current function value
is used to calculate the gradient.

Shaped gradients can be defined in the pulse program as a gradient function. At

96

each moment, the gradient strength is set to the current function value.

The function index can be manipulated with the following statements:

zgrad si n; zero index -> use 1st function value
i grad si n; increment index

dgrad si n; decrement index

sgrad si n; saveindex (stack with depth = 1)
rgrad sin; restoreindex

sgrad si n; savethe current index
rgrad sin; restorethelast saved index

The length of an internal gradient function (or shape) must be specified at the
beginning of the pulse program, e.g.:

| grad sin = 100; sine function with 100 values

Internal Gradient Functions:

A gradient function is either agradient shape that is defined in agradient file, or an
internal function that is calculated during pulse program compilation. The follow-
ing internal functions are available:

plusminus
can take the value 1 or -1.

rid, r2d and r3d

linear ramps from -1 to 1, where the final value is never reached.

step

linear ramp from O to 1 and the final value will aways be reached.

sin

sine function from 0 to 1t xcluding). The angle increment depends on the
length of the function (see above).

cos
cosine function from 0 to 1t (excluding).
sinp

sine function from O to 1t (including Tv).
gauss <truncval>

which is a gaussian function with truncation level (e.g. gauss2.5 for 2.5%
truncation level)

97

e rnd
random function.

6.3.4 Manipulation of rectangular or shaped gradients

Both rectangular and shaped gradients can be manipulated with a constant and/or a
gradient function. Here, manipulation can be addition or multiplication.

Example:

1 300mgron2 * - 0.5 * plusm nus
pl gpl * sin(100) * cnstO

i grad pl usmi nus

igrad sin

loto 1 times 100

If arectangular gradient is manipulated with a gradient function, the latter must be
specified without parameters. For example:

300m gron2 *sin
If, however, a shaped pulse is manipulated with afunction, the latter can be speci-
fied with or without parameters. For example:

pl gpl * sin

p2 gp2 * sin(100)

6.3.5 General Gradient Satements
Since the XWIN-NMR gradient software is also used by ParaVision, it has features,
that actually designed for medical imaging. With gradient statements of the form:
delay grad{<lst dinr | <2nd din> | <r3d dinmp}

you can use these features even without ParaVision, but in arestricted manner:

* You can specify Object Oriented Gradients, that are converted into Physical
Gradients. Thisallowsfor:

- Acquisition of images with different slice orientation while using the same
pulseprogram. The gradients may be specified in spatial coordinates other
than x, y and z. The pulse program compiler multiplies the gradients with a
rotation matrix (see below) to get x, y and z.

- Acquisition of images with different slice thickness and field of view, every

98

6.3.6

spatial dimension may be multiplied by a scaling factor.

» The gradients are defined as a percentage of maximum gradient strength, as
scalar values or functions, which may be combined by addition and multiplica-
tion.

» The functions are either Internal functions, which are handled accordingly by
the compiler, or gradient files containing the function val ues (see above).

» Scaling and rotation can be suppressed with the following options:
no_scale: Gradient is not scaled
direct_scale or shim_scale: Gradient is not scaled and not rotated

» Hardware dependencies can be accounted for by specifying different values for
XyZz.
Examples:

10u grad{(0)]|r2d(100)]| (0)}; Rampinthe2nd (or phase) dimension.
1m gr ad{si n(50, 200) *r 3d(89| 90| 91) +cos(50, 200) |
(20)]| (2] 1] 3,direct_scale)}

The 1st (or read) dimension contains sin(50,200), that means. a sine function with
50 % amplitude. The 2nd parameter indicates a gradient shape, consisting of 200
values, every value applied /200 ms =5 us.

Every sine valueis multiplied with the current value of r3d(89|90|91). The ampli-
tude of r3d is different for xyz to account for hardware dependencies.

The 1st dimension aso contains a 2nd gradient shape cos(50,200). You can com-
bine several gradient shapes in one statement, but the same Iength should be used.

The 2nd (or phase) dimension contains (20), indicating a scalar gradient with 20
per cent amplitude.

The 3rd (or slice) dimension contains (2|1|3, direct_scale), indicating a scalar gra-
dient with 2 per cent amplitude in x direction, 1 per cent iny and 3 per cent in z,
independent of rotation and scaling.

Rotation and Scaling

If the EXPNO directory of the current data set contains atext filecag_par, the

99

rotation and scaling is done, as specified in thisfile.

Elseif $XWINNMRHOM E/exp/stan/nmr/lists/gp contains atext file cag_par,
the rotation and scaling is done, as specified in thisfile:

Example:
0.5 ; Scaling of 1st (or read) dimension
0.5 ; Scaling of 2nd (or phase) dimension
0.8 ; Scaling of 3rd (or slice) dimension

In this case you can acquire 2 sices with different orientation. Like function indi-
ces, you can manipulate dice indices with the statementszsl i ce, i sl i ce,
dslice,sslice,rslice.

1.0 0.0 0.0 ; Scalingof 1st (read or x) dimension
0.0 1.0 0.0 ; Scaling of 2nd (or y) dimension
0.0 0.0 1.0 ; Scalingof 3rd (or z) dimension

1.0 0.0 0.0 ; 1strotation matrix
0.0 1.0 0.0
0.0 0.0 1.0

0.707 0.707 0.0 :; 2ndrotation matrix
- 707 0.707 0.0 ; thelstand2nddimensionsarerotated by
0.0 0.0 1.0 ; 45degrees

Table 6.1 example of acag_par file

6.4 Miscellaneous statements

6.4.1 Switching on/off Presetting of Blanking Pulses: preset
The preset of f statement switches off the presetting of blanking pulses. The

100

6.4.2

6.4.3

6.4.4

program will then behave asif all preset parameters (command edscon) areset to
0. Switching of the presetting must occur at the beginning of the pulse program
and can not be undone.

Assignment of Preamplifier Blanking Pulses: blkpa

The preamplifier blanking pulses are normally set by the edscon preset parame-
ters (BLKPA[1...8]). They can, however, also be declared at the beginning of the
pulse program using the syntax:

bl kpa<channel nunber> = <duration>

Example:
"bl kpal=3u"

Assignment of Transmitter Blanking Pulses: blktr

Thetransmitter blanking pulses are normally set by theedscon preset parameters
(BLKTRJ[1...8]). They can, however, also be declared at the beginning of the the
pulse program using the syntax:

bl kt r <channel nunber> = <duration>

Example:
"bl ktr1=3u"

Generation of Blanking Pulses: gatepulse

Blanking pulses are automatically generated according to the edscon preset
parameters. If, however, the pul se program contains the statement pr eset of f the
generation of blanking pulsesis disabled. In that case, you can selectively enable
the generation of blanking pulses on a particular channel. This can be done with
the gat epul se statement. The syntax is.

delay gatepulse 1 [| 2...]

Example:

3u gatepul se 1 ;generate blanking pulse for f1

pl:f1

dl

2u gat epul se 1| 2 ;generate blanking pulses for f1 and 2
(pl):f1 (p2):f2

101

Note that gat epul se statement will only enable generate the transmitter blanking
pulses, the preamplifier blanking pulses and the ASU blanking pul ses.

6.4.5 Printing messages

The statement
print "Hello World"

prints the message Hello World during runtime of an experiment. Thetiming of the
printout is not necessarily correlated to the execution of the pulse program because
the TCU interprets the pulse program in advance of its execution. However, for
debugging complex pulse programsit could be helpful.

Miscellaneous 102

| ndex

Symbols

#addphase statement 49, 51
#define statement 13, 39, 59
#endif statement 58

#ifdef statement 58

#ifndef statement 58
#include statement 59
#setphase statement 49, 51
* operator 7, 13, 38

.dec postfix 12, 18, 26, 37
.idx postfix 12, 18, 27

.inc postfix 12, 18, 26, 37
.respostfix 12, 18, 26, 37
:c0 - :c34 option 92
‘eoption 71

:f1-:f8 option 15, 16, 18, 19, 26, 28, 41, 46, 100
:gpO0 - :gp31 options 95

:r option 22, 34, 35, 67

:sp0 - :5p31 option 28, 48
:sp0 - :5p31 options 49

X option 73

Numerics

4D experiments 77
4-phase modulator 25

A

absolute power of a shaped pulse 29
acquisition scan 7

ADC blanking 66

adc statement 38, 65, 68, 69, 70, 71, 73, 75
amplitude lists 31

AMX spectrometer 3, 8

AQ parameter 7, 8, 14, 34, 66

ag statement 15, 34, 38, 71, 73
AQ_mod parameter 66

AQSrack 4

AQSEQ parameter 77, 78

agseq statement 78

AQX rack 4

artefact suppression 7

ARX spectrometer 3, 8

ased command 34

ASX spectrometer 3

Avance.incl include file 92

Avance-AQS spectrometer 3, 25, 31, 52, 66, 71, 73
Avance-AQX spectrometer 4, 24, 31, 52, 66, 71, 73

B

BILEV decoupling 53

bilev statement 53

blanking pulses 99

BLKPA[1]-BLKPA[8] parameter array 100
blkpal-blkpa8 statements 100
BLKTR[1]-BLKTR[8] parameter array 100
blktr1-blkir8 statements 100

Broadband decoupling 48

Bruker pulse programs 4

C

cag_par file 99

caret postfix 12, 18, 22, 27, 37

CCU unit 25

cf command 25

CNST[0]-CNST[31] parameter array 24
cnst0-cnst31 statements 15, 24
compilation of a pulse program 3
composite pulse decoupling 45, 47
conditional pulse program execution 57
continuous wave decoupling 6, 45

cos gradient function 96

cosyph pulse program 81

CPD sequences 47

cpd1-cpd8 statements 45, 48
cpdngl-cpdng8 statements 438
cpdngsl-cpdngs8 statements 48
cpdngs29 statement 73

CPDPRGL1 - CPDPRGS parameters 48
cpdsl-cpds8 statements 45, 47, 48
cpdtim1-cpdtim8 statements 15
currentpower statement 29

cw statement 6, 45, 46

D

D[0]-D[31] parameter array 34, 35
d0-d31 statements 15, 34, 35, 39, 49
data set list 76
ddO-dd31 statements 39
DE parameter 8, 34, 66, 69, 71
de statement 34, 69
De.incl includefile 69
DE1 macro 70
DEL1 parameter 8, 34, 66, 71
del statement 15, 34, 38, 69
DE2 macro 70
DE2 parameter 8, 34, 66
de2 statement 15, 34, 38, 69
DE3 macro 70
de3 statement 38
DEADC macro 70
DEADC parameter 8, 34, 66
deadc statement 15, 34, 69
decim statement 15
decoupling 45
frequency 46
phase 46
default
channel 7
power level 7
define delay statement 35, 40
define list<amplitude> statement 31, 32
define list<delay> statement 37, 38
define list<frequency> statement 17, 18
define list<power> statement 26, 28
define list<pulse> statement 11, 12, 13
define loopcounter statement 57
define pulse statement 9, 33
DEPA macro 70
DEPA parameter 8, 34, 65
depa statement 15, 34, 69
DERX macro 70
DERX parameter 8, 34, 66

derx statement 15, 34, 69

df statement 76

dgrad statement 96

digitizer 66, 67, 69, 71, 72, 73
disk file pointer 76

DMX spectrometer 4

do statement 6, 45, 46, 53
double quantum filtering 59
dpO-dp31 statements 23
dpu0-dpu3l statements 13
DPX spectrometer 4

DRX spectrometer 4

DS parameter 6, 7, 22, 63, 66, 67, 69
ds statement 15

dslice statement 99

DSLIST parameter 76, 91
du0-du31 statements 56
dummy scans 6, 7, 22, 63, 67, 69
DW parameter 14, 34

dw statement 15, 34, 38

dwell time 71, 72
DWELL_GEN macro 71
DWOV parameter 34

dwov statement 15, 34

E

ed4ph command 25

edacommand 3, 10, 16, 22, 26, 28, 30, 33, 35, 57, 66,
94, 95

edasp command 16

edcpd command 47

edcpul command 3

edlist command 11, 16, 27, 36, 37, 56

edprosol command 32

edpul command 3, 4, 71, 92

edscon command 8, 24, 31, 70, 100

end-of-scan handling 70

eosc statement 68, 69, 70, 71

eoscnp statement 70

exit statement 8

expinstall command 4

external dwell 73

F
FO clause 86, 88

F1EA clause 80, 88
f1-f8 channels 16
F1I clause 86, 88
F1PH clause 80, 88
F1QF clause 80, 88
F2EA clause 84, 88
F2l clause 88
F2PH clause 84, 88
F2QF clause 84, 88
fast shapes 31
FCU unit 25
fidfile8, 76, 77
fixed delay 35
flipangle 32, 34
FNMODE parameter 80
fq statement 16, 49, 52, 53
fg1-fg8 statements 16, 52
FQILLIST-FQ8LIST parameters 16, 52
frequency

channel 15

list 16, 17, 49, 52
frequency offset 52
frequency setting

in CPD programs 52

G

Garp decoupling 48
Garp sequence 48
gatepul se statement 100
gauss gradient function 96
go command 3, 56, 59, 76
go statement 5, 7, 8, 21, 38, 65, 66, 67, 68, 69, 73, 75
gol-go8 statements 91
gonp statement 65, 66, 67, 68, 69, 75
gosc statement 65, 66, 68, 69, 75
goscnp statement 65, 66, 68, 69, 75
goto statement 5
GPO031 gradient parameter table 94, 95
GPX0-GPX 31 parameter 94
GPY 0-GPY 31 parameter 94
GPZ0-GPZ31 parameter 94
grad statement 97
gradient

coil 93

filename 95

function 95, 97

rectangular 93, 97

shaped 93, 94

strength 93, 94, 95
groff statement 94
gron0-gron31 statements 94
gs command 3, 35, 52, 56

H

hardware list 25

hd statement 45
homodecoupling 45, 71
HPCU unit 25

id0-id31 statements 39, 77

if statement 76, 77

igrad statement 96

in0-in31 statements 15
inp0-inp31 statements 15
intermediate frequency 66, 71
interrupt handling 71
interrupt signal 71

ip0-ip31 statements 23, 77
ipp0-ipp31 statements 22, 66
ipu0-ipu3l statements 13
islice statement 99

iu0- iu31 statements 56

ivc statement 57

ivd statement 36

ivp statement 11

J
jump to label statement 49, 53

L

L[Q]-L[31] parameter array 53, 56

10131 statements 15, 53, 56
LBLF1 label 89

level triggers 62

Igrad statement 96

lo to label statement 5, 49, 53, 55, 56

loop counters 15
loop statements 55
in CPD programs 53

in pulse programs 55
M

m option (delay) 34

mc statement 69, 76, 80
MC2 parameter 80
MCREST delay 89
MCWRK delay 89
memory buffer 66, 73
mp option (pulse) 9, 10
multiple receivers 91

N

NBL parameter 56, 68, 74, 75, 76, 77
nbl statement 15

NMR control words 93

noedif pulse program 75
noesyi4pr3d pulse program 84

NS parameter 6, 7, 8, 63, 66, 67

ns statement 15

nsdone statement 15

NUCLEI parameter 16

O
observe channel 66, 67

P

P[0]-P[31] parameter array 10
pO-p31 statements 9, 10, 13, 14, 15, 49
ParaVision software 97
pcpdl1-pcpd8 statements 49
PH_ref parameter 67
phO-ph31 statements 21, 22
phase

coherency 29

cycling 7, 21

increment 21

list 7

multiplier 23

pointer 21

presetting 24

resolution 20
phase program 7

arithmetic 23

definition 19

position 21
PHASPR[1]-PHASPR[8] parameter array 24
phasprl-phasrpr8 statements 24
PHCOR[0]-PHCOR][31] parameters 22
pl statement 49
PL[O]-PL[31] parameter array 26, 33
plO-pl3 statements 26
plO-pl31 statements 33
plusminus gradient function 96
power level 6
power lists 26
preamplifier 65
precompiler Conditions 59
pre-evaluation of a pulse program 14
pre-processed pulse program 59
pre-processor 59
pre-scan delay 8
preset off statement 99
PULPROG parameter 3
pulsdisp command 4, 56, 59
pulse

duration 9, 13

frequency 15

generation 9

list9, 11, 12, 92

phase 19

shape 28
pulse program

compiler 3, 56, 59, 77, 92, 97

display 4, 59
pul se shape absolute power 29
pulse statement 9, 32

R

rid gradient function 96
r2d gradient function 96
r3d gradient function 96
random delay 35
RCPO-RCP34 outputs 92
RCU DRAM 75

RCU unit 71, 73, 75, 91
rcyc statement 67, 68, 69, 70, 71
rcycnp statement 67, 68, 70
rd0-rd31 statements 39

real time outputs 92

receiver

blanking 66

coil 93

gate 66

number 91

phase 7, 67, 71
rectangular

gradient 93, 97

pulse 26
recycle delay 71
reference frequency 67
replace mode 68, 73
resume command 64
rf statement 76
rgrad statement 96
rnd gradient function 97
rotation matrix 97
rp0-rp31 statements 23
rpp0-rpp31 statements 22
rpu0-rpu3l statements 13
rs485 channel 25
rslice statement 99
ru0-ru3l statements 56
RX22 receiver 66, 71

S

soption (delay) 34
scan counter 6, 68
selno pulse program 69
ser file 76, 77
setnmrO-setnmr8 statements 92, 93
SFO1-SFO8 parameters 16
sgrad statement 96
SGU unit 26, 71, 73
shape
file 28, 29
offset frequency 29
Shape Tool 29, 95
shaped
gradient 93, 94, 97
pulse 28
shaped pulse
offset frequency 30
presetting 31
SHAPPR[1]-SHAPPR[8] 31

sin gradient function 96
sinp gradient function 96
solid state experiments 25
solid states experiments 31
sp option (pulse) 9, 10
SPO7 parameter 28, 30
spfO-spf31 statements 31
sslice statement 99

st command 29, 95

st statement 56, 74, 75, 77
StO statement 56, 74, 75, 77
stdisp command 29, 95
steady state condition 7

steady state conditions 63, 67

step gradient function 96
suspend command 64
syrec statement 66, 71

T
TCU unit 61, 63, 73, 92

TD parameter 14, 56, 66, 69, 74, 76, 77

td statement 15
td1 statement 15, 78
td2 statement 15, 78
tr command 8, 66
transistorized amplifiers 25
trigger
events 61
inputs 61
specifiers 62
tube amplifiers 25

U

u option (delay) 34
up option (pulse) 9, 10
user defined delay 35

\Y

V9 parameter 35
VALIST parameter 27
variablelist delay 36
vcidx statement 56
VCLIST parameter 56
vd statement 15, 34, 36
VDLIST parameter 36

vp statement 9, 11, 13, 15, 29
VPLIST parameter 11, 15

W
wr statement 8, 56, 76, 79, 80

z

zd statement 6, 22, 67, 68, 69, 74, 77, 80
ze statement 5, 6, 7, 22, 67, 68, 69, 74, 77
zg command 3, 56, 59, 76, 80

zg pulse program 71

zgadc pulse program 71

zgcw30 pulse program 4

ZGOPTNS parameter 59

zgrad statement 96

zslice statement 99

	Chapter 1
	Basic pulse program writing
	1.1 Introduction
	1.2 Pulse program library
	1.3 Pulse program display
	1.4 Basic syntax rules
	1.5 Pulse generation
	1.6 Delay generation
	1.7 Simultaneous pulses and delays

	Chapter 2
	Decoupling
	2.1 Decoupling
	2.2 Composite pulse decoupling (CPD)

	Chapter 3
	Loops and conditions
	3.1 Loop statements
	3.2 Conditional pulse program execution
	3.3 Suspend/resume pulse program execution

	Chapter 4
	Data acquisition and storage
	4.1 Start data acquisition
	4.2 Acquisition memory buffers
	4.3 Writing data to disk

	Chapter 5
	The mc macro statement
	5.1 The mc macro statement in 2D
	5.2 The mc macro statement in 3D
	5.3 Additional mc clauses
	5.4 General syntax of mc

	Chapter 6
	Miscellaneous
	6.1 Multiple receivers
	6.2 Real time outputs
	6.3 Gradients
	6.4 Miscellaneous statements

